- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Campos, Felipe A (1)
-
Loeser, Eva_H (1)
-
Williams, Ruth J (1)
-
Williams, Ruth_J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this paper, we consider a multi-server, multiclass queue with reneging operating under the random order of service discipline. Interarrival times, service times, and patience times are assumed to be generally distributed. Under mild conditions, we establish a fluid limit theorem for a measure-valued process that keeps track of the remaining patience time for each job in the queue, when the number of servers and classes is held fixed. We prove uniqueness for fluid model solutions in all but one case. We characterize the unique invariant state for the fluid model and prove that fluid model solutions converge to the invariant state as time goes to infinity, uniformly for suitable initial conditions.more » « less
-
Campos, Felipe A; Williams, Ruth J (, Advances in Applied Probability)Abstract Continuous-time Markov chains are frequently used to model the stochastic dynamics of (bio)chemical reaction networks. However, except in very special cases, they cannot be analyzed exactly. Additionally, simulation can be computationally intensive. An approach to address these challenges is to consider a more tractable diffusion approximation. Leite and Williams (Ann. Appl. Prob.29, 2019) proposed a reflected diffusion as an approximation for (bio)chemical reaction networks, which they called the constrained Langevin approximation (CLA) as it extends the usual Langevin approximation beyond the first time some chemical species becomes zero in number. Further explanation and examples of the CLA can be found in Anderson et al.( SIAM Multiscale Modeling Simul.17, 2019). In this paper, we extend the approximation of Leite and Williams to (nearly) density-dependent Markov chains, as a first step to obtaining error estimates for the CLA when the diffusion state space is one-dimensional, and we provide a bound for the error in a strong approximation. We discuss some applications for chemical reaction networks and epidemic models, and illustrate these with examples. Our method of proof is designed to generalize to higher dimensions, provided there is a Lipschitz Skorokhod map defining the reflected diffusion process. The existence of such a Lipschitz map is an open problem in dimensions more than one.more » « less
An official website of the United States government
