skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2154459

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We introduce and examine three subclasses of the family of quantum no-signalling (QNS) correlations introduced by Duan and Winter: quantum commuting, quantum and local. We formalise the notion of a universal TRO of a block operator isometry, define an operator system, universal for stochastic operator matrices, and realise it as a quotient of a matrix algebra. We describe the classes of QNS correlations in terms of states on the tensor products of two copies of the universal operator system and specialise the correlation classes and their representations to classical-to-quantum correlations. We study various quantum versions of synchronous no-signalling correlations and show that they possess invariance properties for suitable sets of states. We introduce quantum non-local games as a generalisation of non-local games. We define the operation of quantum game composition and show that the perfect strategies belonging to a certain class are closed under channel composition. We specialise to the case of graph colourings, where we exhibit quantum versions of the orthogonal rank of a graph as the optimal output dimension for which perfect classical-to-quantum strategies of the graph colouring game exist, as well as to non-commutative graph homomorphisms, where we identify quantum versions of non-commutative graph homomorphisms introduced by Stahlke. 
    more » « less
  2. Free, publicly-accessible full text available May 23, 2026