skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2154791

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Conventional time-of-flight methods can be used to determine carrier mobilities for photovoltaic cells in which the transit time between electrodes is greater than the RC time constant of the device. To measure carrier drift on sub-ns timescales, we have recently developed a two-pulse time-of-flight technique capable of detecting drift velocities with 100-ps time resolution in perovskite materials. In this method, the rates of carrier transit across the active layer of a device are determined by varying the delay time between laser pulses and measuring the magnitude of the recombination-induced nonlinearity in the photocurrent. Here, we present a related experimental approach in which diffractive optic-based transient grating spectroscopy is combined with our two-pulse time-of-flight technique to simultaneously probe drift and diffusion in orthogonal directions within the active layer of a photovoltaic cell. Carrier density gratings are generated using two time-coincident pulse-pairs with passively stabilized phases. Relaxation of the grating amplitude associated with the first pulse-pair is detected by varying the delay and phase of the density grating corresponding to the second pulse-pair. The ability of the technique to reveal carrier diffusion is demonstrated with model calculations and experiments conducted using MAPbI3 photovoltaic cells. 
    more » « less
  2. Low-dimensional organic/inorganic hybrid perovskites (OIHPs) are a promising class of materials with a wide range of potential applications in optoelectronics and other fields since these materials can synergistically combine individual features of organic molecules and inorganics into unique properties. Non-covalent interactions are commonly observed in OIHPs, in particular, π-effect interactions between the organic cations. Such non-covalent interactions can significantly influence important properties of the low-dimensional OIHPs, including dielectric confinement, bandgap, photoluminescence, quantum efficiency, charge mobility, trap density, stability, and chirality. This perspective reviews recent studies of non-covalent interactions involving the π systems of organic cations in low-dimensional OIHPs. The analysis of crystal structures of low-dimensional OIHPs offers significant insight into understanding such non-covalent interactions and their impacts on specific properties of these OIHPs. The developed structure–property relationships can be used to engineer non-covalent interactions in low-dimensional OIHPs for applications. 
    more » « less