Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 29, 2025
-
Hardware-assisted Fault Isolation (HFI) is a minimal extension to current processors that supports secure, flexible, and efficient in-process isolation. HFI addresses the limitations of software-based fault isolation (SFI) systems including: runtime overheads, limited scalability, vulnerability to Spectre attacks, and limited compatibility with existing code and binaries. HFI can be seamlessly integrated into exisiting SFI systems (e.g. WebAssembly), or directly sandbox unmodified native binaries. To ease adoption, HFI proposes incremental changes to existing high-performance processors.more » « lessFree, publicly-accessible full text available July 21, 2025
-
We introduce Flux, which shows how logical refinements can work hand in glove with Rust's ownership mechanisms to yield ergonomic type-based verification of low-level pointer manipulating programs. First, we design a novel refined type system for Rust that indexes mutable locations, with pure (immutable) values that can appear in refinements, and then exploits Rust's ownership mechanisms to abstract sub-structural reasoning about locations within Rust's polymorphic type constructors, while supporting strong updates. We formalize the crucial dependency upon Rust's strong aliasing guarantees by exploiting the Stacked Borrows aliasing model to prove that "well-borrowed evaluations of well-typed programs do not get stuck". Second, we implement our type system in Flux, a plug-in to the Rust compiler that exploits the factoring of complex invariants into types and refinements to efficiently synthesize loop annotations-including complex quantified invariants describing the contents of containers-via liquid inference. Third, we evaluate Flux with a benchmark suite of vector manipulating programs and parts of a previously verified secure sandboxing library to demonstrate the advantages of refinement types over program logics as implemented in the state-of-the-art Prusti verifier. While Prusti's more expressive program logic can, in general, verify deep functional correctness specifications, for the lightweight but ubiquitous and important verification use-cases covered by our benchmarks, liquid typing makes verification ergonomic by slashing specification lines by a factor of two, verification time by an order of magnitude, and annotation overhead from up to 24% of code size (average 14%), to nothing at all.more » « less
-
We introduce Hardware-assisted Fault Isolation (HFI), a simple extension to existing processors to support secure, flexible, and efficient in-process isolation. HFI addresses the limitations of existing software-based isolation (SFI) systems including: runtime overheads, limited scalability, vulnerability to Spectre attacks, and limited compatibility with existing code. HFI can seamlessly integrate with current SFI systems (e.g., WebAssembly), or directly sandbox unmodi!ed native binaries. To ease adoption, HFI relies only on incremental changes to the data and control path of existing high-performance processors. We evaluate HFI for x86-64 using the gem5 simulator and compiler-based emulation on a mix of real and synthetic workloads.more » « less