Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract In this paper, NeuralProphet (NP), an explainable hybrid modular framework, enhances the forecasting performance of pandemics by adding two neural network modules; auto-regressor (AR) and lagged-regressor (LR). An advanced deep auto-regressor neural network (Deep-AR-Net) model is employed to implement these two modules. The enhanced NP is optimized via AdamW and Huber loss function to perform multivariate multi-step forecasting contrast to Prophet. The models are validated with COVID-19 time-series datasets. The NP’s efficiency is studied component-wise for a long-term forecast for India and an overall reduction of 60.36% and individually 34.7% by AR-module, 53.4% by LR-module in MASE compared to Prophet. The Deep-AR-Net model reduces the forecasting error of NP for all five countries, on average, by 49.21% and 46.07% for short-and-long-term, respectively. The visualizations confirm that forecasting curves are closer to the actual cases but significantly different from Prophet. Hence, it can develop a real-time decision-making system for highly infectious diseases.more » « less
- 
            Free, publicly-accessible full text available July 19, 2026
- 
            Estimating the transmission fitness of SARS‐CoV‐2 variants and understanding their evolutionary fitness trends are important for epidemiological forecasting. Existing methods are often constrained by their parametric natures and do not satisfactorily align with the observations during COVID‐19. Here, we introduce a sliding‐window data‐driven pairwise comparison method, the differential population growth rate (DPGR) that uses viral strains as internal controls to mitigate sampling biases. DPGR is applicable in time windows in which the logarithmic ratio of two variant subpopulations is approximately linear. We apply DPGR to genomic surveillance data and focus on variants of concern (VOCs) in multiple countries and regions. We found that the log‐linear assumption of DPGR can be reliably found within appropriate time windows in many areas. We show that DPGR estimates of VOCs align well with regional empirical observations in different countries. We show that DPGR estimates agree with another method for estimating pathogenic transmission. Furthermore, DPGR allowed us to construct viral relative fitness landscapes that capture the shifting trends of SARS‐CoV‐2 evolution, reflecting the relative changes of transmission traits for key genotypic changes represented by major variants. The straightforward log‐linear regression approach of DPGR may also facilitate its easy adoption. This study shows that DPGR is a promising new tool in our repertoire for addressing future pandemics.more » « lessFree, publicly-accessible full text available April 21, 2026
- 
            Free, publicly-accessible full text available April 2, 2026
- 
            Free, publicly-accessible full text available January 10, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available December 16, 2025
- 
            The global rise in heart disease necessitates precise prediction tools to assess individual risk levels. This paper introduces a novel Multi-Objective Artificial Bee Colony Optimized Hybrid Deep Belief Network and XGBoost (HDBN-XG) algorithm, enhancing coronary heart disease prediction accuracy. Key physiological data, including Electrocardiogram (ECG) readings and blood volume measurements, are analyzed. The HDBN-XG algorithm assesses data quality, normalizes using z-score values, extracts features via the Computational Rough Set method, and constructs feature subsets using the Multi-Objective Artificial Bee Colony approach. Our findings indicate that the HDBN-XG algorithm achieves an accuracy of 99%, precision of 95%, specificity of 98%, sensitivity of 97%, and F1-measure of 96%, outperforming existing classifiers. This paper contributes to predictive analytics by offering a data-driven approach to healthcare, providing insights to mitigate the global impact of coronary heart disease.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available