- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Castellanos, Adrian_A (1)
-
Drake, John_M (1)
-
Graeden, Ellie (1)
-
Han, Barbara A (1)
-
Han, Barbara_A (1)
-
LaDeau, Shannon (1)
-
Mulder, ed., Nicola (1)
-
Robertson, Hailey (1)
-
Rosado, David (1)
-
Stott, Guppy (1)
-
Subramaniam, Ajit (1)
-
Varshney, Kush R (1)
-
Weathers, Kathleen C (1)
-
Zimmerman, Ryan (1)
-
Zwart, Jacob (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
Power, Mary (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract MotivationEcological systems are complex. Representing heterogeneous knowledge about ecological systems is a pervasive challenge because data are generated from many subdisciplines, exist in disparate sources, and only capture a subset of interactions underpinning system dynamics. Knowledge graphs (KGs) have been successfully applied to organize heterogeneous data and to predict new linkages in complex systems. Though not previously applied broadly in ecology, KGs have much to offer in an era when system dynamics are responding to rapid changes across multiple scales. ResultsWe developed a KG to demonstrate the method’s utility for ecological problems focused on highly pathogenic avian influenza (HPAI), a highly transmissible virus with a broad host range, wide geographic distribution, and rapid evolution with pandemic potential. We describe the development of a graph to include data related to HPAI including pathogen–host associations, species distributions, and population demographics, using a semantic ontology that defines relationships within and between datasets. We use the graph to perform a set of proof-of-concept analyses validating the method and identifying patterns of HPAI ecology. We underscore the generalizable value of KGs to ecology including ability to reveal previously known relationships and testable hypotheses in support of a deeper mechanistic understanding of ecological systems. Availability and implementationThe data and code are available under the MIT License on GitHub at https://github.com/cghss-data-lab/uga-pipp.more » « less
-
Han, Barbara A; Varshney, Kush R; LaDeau, Shannon; Subramaniam, Ajit; Weathers, Kathleen C; Zwart, Jacob (, Proceedings of the National Academy of Sciences)Power, Mary (Ed.)Research in both ecology and AI strives for predictive understanding of complex systems, where nonlinearities arise from multidimensional interactions and feedbacks across multiple scales. After a century of independent, asynchronous advances in computational and ecological research, we foresee a critical need for intentional synergy to meet current societal challenges against the backdrop of global change. These challenges include understanding the unpredictability of systems-level phenomena and resilience dynamics on a rapidly changing planet. Here, we spotlight both the promise and the urgency of a convergence research paradigm between ecology and AI. Ecological systems are a challenge to fully and holistically model, even using the most prominent AI technique today: deep neural networks. Moreover, ecological systems have emergent and resilient behaviors that may inspire new, robust AI architectures and methodologies. We share examples of how challenges in ecological systems modeling would benefit from advances in AI techniques that are themselves inspired by the systems they seek to model. Both fields have inspired each other, albeit indirectly, in an evolution toward this convergence. We emphasize the need for more purposeful synergy to accelerate the understanding of ecological resilience whilst building the resilience currently lacking in modern AI systems, which have been shown to fail at times because of poor generalization in different contexts. Persistent epistemic barriers would benefit from attention in both disciplines. The implications of a successful convergence go beyond advancing ecological disciplines or achieving an artificial general intelligence—they are critical for both persisting and thriving in an uncertain future.more » « less
An official website of the United States government
