- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Ashokan, Ajith (2)
-
Salman, Seyhan (2)
-
Abdelmagid, Ahmed Gaber (1)
-
Coropceanu, Veaceslav (1)
-
Daskalakis, Konstantinos S. (1)
-
Kumar, Manish (1)
-
Luoma, Kimmo (1)
-
Papachatzakis, Michael A. (1)
-
Qureshi, Hassan A. (1)
-
Siltanen, Olli (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Modifying the energy landscape of existing molecular emitters is an attractive challenge with favourable outcomes in chemistry and organic optoelectronic research. It has recently been explored through strong light–matter coupling studies where the organic emitters were placed in an optical cavity. Nonetheless, a debate revolves around whether the observed change in the material properties represents novel coupled system dynamics or the unmasking of pre-existing material properties induced by light–matter interactions. Here, for the first time, we examined the effect of strong coupling in polariton organic light-emitting diodes via time-resolved electroluminescence studies. We accompanied our experimental analysis with theoretical fits using a model of coupled rate equations accounting for all major mechanisms that can result in delayed electroluminescence in organic emitters. We found that in our devices the delayed electroluminescence was dominated by emission from trapped charges and this mechanism remained unmodified in the presence of strong coupling.more » « less
-
Ashokan, Ajith; Coropceanu, Veaceslav; Salman, Seyhan (, AIP Advances)Organometallic complexes, including copper atom, have attracted great interest as thermally activated delayed fluorescence (TADF) emitters for light emitting diode (LED) applications. This is ascribed to the potential low-cost, abundant availability of copper and most importantly to the ability of copper to enhance the spin–orbit couplings and, consequently, increase the reverse intersystem crossing rates. In this article, we use density functional theory (DFT) to investigate the excited state properties of six copper complexes based on N-heterocyclic carbene ligand, monoamido-amino carbene and diamido carbene, and carbazole ligand. The DFT calculations show that the lowest excited states consist of three groups, i.e., (i) local carbazole excitations, (ii) carbazole-to-carbene intramolecular charge transfer states, and (iii) metal-to-ligand charge transfer states. Only the latter states are characterized with large spin–orbit couplings. The DFT calculations show that the surrounding medium could have a major effect on electronic spectrum by reordering the states. Our results suggest that the TADF properties of the investigated complexes can be affected by the chemical structure of the ligands as well as by the dielectric properties of the LED device active layer.more » « less