Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We formulate a general problem: Given projective schemes and over a global fieldKand aK‐morphism η from to of finite degree, how many points in of height at mostBhave a pre‐image under η in ? This problem is inspired by a well‐known conjecture of Serre on quantitative upper bounds for the number of points of bounded height on an irreducible projective variety defined over a number field. We give a nontrivial answer to the general problem when and is a prime degree cyclic cover of . Our tool is a new geometric sieve, which generalizes the polynomial sieve to a geometric setting over global function fields.more » « less
-
We introduce a new class of generalised quadratic forms over totally real number fields, which is rich enough to capture the arithmetic of arbitrary systems of quadrics over the rational numbers. We explore this connection through a version of the Hardy–Littlewood circle method over number fields.more » « less
-
We provide a simple criterion on a family of functions that implies a square function estimate on for every even integer . This defines a new type of superorthogonality that is verified by checking a less restrictive criterion than any other type of superorthogonality that is currently known.more » « less
An official website of the United States government
