- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0010000003000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Tucker, Kevin (4)
-
Bhatt, Bhargav (1)
-
Datta, Rankeya (1)
-
Ma, Linquan (1)
-
Patakfalvi, Zsolt (1)
-
Polstra, Thomas (1)
-
Schwede, Karl (1)
-
Simpson, Austyn (1)
-
Smirnov, Ilya (1)
-
Waldron, Joe (1)
-
Witaszek, Jakub (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
Hacon, Christopher (1)
-
Xu, Chenyang (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract F-signature is an important numeric invariant of singularities in positive characteristic that can be used to detect strong F-regularity.One would like to have a variant that rather detects F-rationality, and there are two theories that aim to fill this gap: F-rational signature of Hochster and Yao and dual F-signature of Sannai.Unfortunately, several important properties of the original F-signature are unknown for these invariants.We find a modification of the Hochster–Yao definition that agrees with Sannai’s dual F-signature and push further the united theory to achieve acompletegeneralization of F-signature.more » « less
-
Polstra, Thomas; Simpson, Austyn; Tucker, Kevin (, Cambridge University Press)Hacon, Christopher; Xu, Chenyang (Ed.)Free, publicly-accessible full text available January 2, 2026
-
Datta, Rankeya; Tucker, Kevin (, Journal of Algebra)
-
Bhatt, Bhargav; Ma, Linquan; Patakfalvi, Zsolt; Schwede, Karl; Tucker, Kevin; Waldron, Joe; Witaszek, Jakub (, Publications mathématiques de l'IHÉS)Abstract We establish the Minimal Model Program for arithmetic threefolds whose residue characteristics are greater than five. In doing this, we generalize the theory of global $$F$$ F -regularity to mixed characteristic and identify certain stable sections of adjoint line bundles. Finally, by passing to graded rings, we generalize a special case of Fujita’s conjecture to mixed characteristic.more » « less
An official website of the United States government
