skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2200917

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. There is consensus that computational modeling can support integration of science with computing for student learning. However, it can be challenging for teachers to gain comfort with this relatively new practice, reconcile how it relates to science, and recognize its pedagogical value. In this paper, we illustrate how teachers working with a (serendipitous) analogy between a familiar process and a topic covered in chemistry class–frogs catching flies and reaction rates–enabled them to take up computational modeling in their science teaching. Drawing on notes from co-design sessions, teacher interviews and student worksheets, we illustrate how a focal teacher shifted from initial reluctance to taking ownership of designing and teaching a computational modeling lesson sequence. We also briefly show how her students took up this work. Finally, we reflect on the importance of leveraging teachers’ existing domain and pedagogical expertise as we bring these new practices into their classrooms. 
    more » « less
    Free, publicly-accessible full text available June 15, 2026
  2. There is consensus that computational modeling can support integration of science with computing for student learning. However, it can be challenging for teachers to gain comfort with this relatively new practice, reconcile how it relates to science, and recognize its pedagogical value. In this paper, we illustrate how teachers working with a (serendipitous) analogy between a familiar process and a topic covered in chemistry class–frogs catching flies and reaction rates–enabled them to take up computational modeling in their science teaching. Drawing on notes from co-design sessions, teacher interviews and student worksheets, we illustrate how a focal teacher shifted from initial reluctance to taking ownership of designing and teaching a computational modeling lesson sequence. We also briefly show how her students took up this work. Finally, we reflect on the importance of leveraging teachers’ existing domain and pedagogical expertise as we bring these new practices into their classrooms. 
    more » « less
    Free, publicly-accessible full text available June 15, 2026