skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2201251

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We prove the relative Grauert–Riemenschneider vanishing, Kawamata–Viehweg vanishing, and Kollár injectivity theorems for proper morphisms of schemes of equal characteristic zero, solving conjectures of Boutot and Kawakita. Our proof uses the Grothendieck limit theorem for sheaf cohomology and Zariski–Riemann spaces. We also show that these vanishing and injectivity theorems hold for locally Moishezon (respectively, projective) morphisms of quasi-excellent algebraic spaces and semianalytic germs of complex-analytic spaces (respectively, quasi-excellent formal schemes and non-Archimedean analytic spaces), all in equal characteristic zero. We give many applications of our vanishing results. For example, we extend Boutot’s theorem to all Noetherian Q-algebras by showing that pseudo-rationality descends under pure maps of Q-algebras. This solves a conjecture of Boutot and answers a question of Schoutens. The proofs of this Boutot-type result and of our vanishing and injectivity theorems all use a new characterization of rational singularities using Zariski–Riemann spaces. 
    more » « less