skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2201273

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In order to diagnose the cause of some defects in the category of canonical hypergroups, we investigate several categories of hyperstructures that generalize hypergroups. By allowing hyperoperations with possibly empty products, one obtains categories with desirable features such as completeness and cocompleteness, free functors, regularity, and closed monoidal structures. We show by counterexamples that such constructions cannot be carried out within the category of canonical hypergroups. This suggests that (commutative) unital, reversible hypermagmas—which we call mosaics—form a worthwhile generalization of (canonical) hypergroups from the categorical perspective. Notably, mosaics contain pointed simple matroids as a subcategory, and projective geometries as a full subcategory. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. This is a survey of noncommutative generalizations of the spectrum of a ring, written for the Notices of the American Mathematical Society. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. In pursuit of a noncommutative spectrum functor, we argue that the Heyneman-Sweedler finite dual coalgebra can be viewed as a quantization of the maximal spectrum of a commutative affine algebra, integrating prior perspectives of Takeuchi, Batchelor, Kontsevich-Soibelman, and Le Bruyn. We introduce fully residually finite-dimensional algebras A as those with enough finite-dimensional representations to let A^o act as an appropriate depiction of the noncommutative maximal spectrum of A; importantly, this class includes affine noetherian PI algebras. In the case of prime affine algebras that are module-finite over their center, we describe how the Azumaya locus is represented in the finite dual. This is used to describe the finite dual of quantum planes at roots of unity as an endeavor to visualize the noncommutative space on which these algebras act as functions. Finally, we discuss how a similar analysis can be carried out for other maximal orders over surfaces. 
    more » « less