skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2202526

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The development of deep learning (DL) weather forecasting models has made rapid progress and achieved comparable or better skill than traditional Numerical Weather prediction (NWP) models, which are generally computationally intensive. However, applications of these DL models have yet to be fully explored, including for severe convective events. We evaluate the DL model Pangu‐Weather in forecasting tornadic environments with one‐day lead times using convective available potential energy (CAPE), 0–6 bulk wind difference (BWD6), and 0–3 km storm‐relative helicity (SRH3). We also compare its performance to the National Centers for Environmental Prediction (NCEP)'s Global Forecast System (GFS), a traditional NWP model. Pangu‐Weather generally outperforms GFS in predicting BWD6 and SRH3 at the closest grid point and hour of the storm report. However, Pangu‐Weather tends to underpredict the maximum values of all convective parameters in the 1–2 hr before the storm across the surrounding grid points compared to the GFS. 
    more » « less
    Free, publicly-accessible full text available April 16, 2026
  2. Abstract A deep learning (DL) model, based on a transformer architecture, is trained on a climate‐model data set and compared with a standard linear inverse model (LIM) in the tropical Pacific. We show that the DL model produces more accurate forecasts compared to the LIM when tested on a reanalysis data set. We then assess the ability of an ensemble Kalman filter to reconstruct the monthly averaged upper ocean from a noisy set of 24 sea‐surface temperature observations designed to mimic existing coral proxy measurements, and compare results for the DL model and LIM. Due to signal damping in the DL model, we implement a novel inflation technique by adding noise from hindcast experiments. Results show that assimilating observations with the DL model yields better reconstructions than the LIM for observation averaging times ranging from 1 month to 1 year. The improved reconstruction is due to the enhanced predictive capabilities of the DL model, which map the memory of past observations to future assimilation times. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. Abstract Paleoclimate reconstructions are increasingly central to climate assessments, placing recent and future variability in a broader historical context. Paleoclimate reconstructions are increasingly central to climate assessments, placing recent and future variability in a broader historical context. Several estimation methods produce plumes of climate trajectories that practitioners often want to compare to other reconstruction ensembles, or to deterministic trajectories produced by other means, such as global climate models. Of particular interest are “offline” data assimilation (DA) methods, which have recently been adapted to paleoclimatology. Offline DA lacks an explicit model connecting time instants, so its ensemble members are not true system trajectories. This obscures quantitative comparisons, particularly when considering the ensemble mean in isolation. We propose several resampling methods to introduce a priori constraints on temporal behavior, as well as a general notion, called plume distance, to carry out quantitative comparisons between collections of climate trajectories (“plumes”). The plume distance provides a norm in the same physical units as the variable of interest (e.g. °C for temperature), and lends itself to assessments of statistical significance. We apply these tools to four paleoclimate comparisons: (1) global mean surface temperature (GMST) in the online and offline versions of the Last Millennium Reanalysis (v2.1); (2) GMST from these two ensembles to simulations of the Paleoclimate Model Intercomparison Project past1000 ensemble; (3) LMRv2.1 to the PAGES 2k (2019) ensemble of GMST and (4) northern hemisphere mean surface temperature from LMR v2.1 to the Büntgen et al. (2021) ensemble. Results generally show more compatibility between these ensembles than is visually apparent. The proposed methodology is implemented in an open-source Python package, and we discuss possible applications of the plume distance framework beyond paleoclimatology. 
    more » « less
    Free, publicly-accessible full text available December 12, 2025
  4. Abstract The traditional method for estimating weather forecast sensitivity to initial conditions uses adjoint models, which are limited to short lead times due to linearization around a control forecast. The advent of deep‐learning frameworks enables a new approach using backpropagation and gradient descent to iteratively optimize initial conditions, minimizing forecast errors. We apply this approach to the June 2021 Pacific Northwest heatwave using the GraphCast model, yielding over 90% reduction in 10‐day forecast errors over the Pacific Northwest. Similar improvements are found for Pangu‐Weather model forecasts initialized with the GraphCast‐derived optimal, suggesting that model error is an unimportant part of the perturbations. Eliminating small scales from the perturbations also yields similar forecast improvements. Extending the length of the optimization window, we find forecast improvement to about 23 days, suggesting atmospheric predictability at the upper end of recent estimates. 
    more » « less
  5. Abstract Global deep learning weather prediction models have recently been shown to produce forecasts that rival those from physics-based models run at operational centers. It is unclear whether these models have encoded atmospheric dynamics or simply pattern matching that produces the smallest forecast error. Answering this question is crucial to establishing the utility of these models as tools for basic science. Here, we subject one such model, Pangu-Weather, to a set of four classical dynamical experiments that do not resemble the model training data. Localized perturbations to the model output and the initial conditions are added to steady time-averaged conditions, to assess the propagation speed and structural evolution of signals away from the local source. Perturbing the model physics by adding a steady tropical heat source results in a classical Matsuno–Gill response near the heating and planetary waves that radiate into the extratropics. A localized disturbance on the winter-averaged North Pacific jet stream produces realistic extratropical cyclones and fronts, including the spontaneous emergence of polar lows. Perturbing the 500-hPa height field alone yields adjustment from a state of rest to one of wind–pressure balance over ∼6 h. Localized subtropical low pressure systems produce Atlantic hurricanes, provided the initial amplitude exceeds about 4 hPa, and setting the initial humidity to zero eliminates hurricane development. We conclude that the model encodes realistic physics in all experiments and suggest that it can be used as a tool for rapidly testing a wide range of hypotheses. 
    more » « less