skip to main content


Search for: All records

Award ID contains: 2203112

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A unique approach was used to synthesize the high entropy alloy MoNbTaVW via reduction of metal-oxide precursors in a microwave plasma. The metal-oxides underwent ball milling and consolidation before plasma annealing at 1800 °C for 1 h with hydrogen as feedgas. X-ray diffraction, scanning electron microscopy/energy dispersive x-ray analysis, and Vickers hardness testing reveal characteristics of the high-entropy alloy. This includes a predominantly single-phase body-centered cubic structure, homogeneous distribution of all five metals, and 6.8 ± 0.9 GPa hardness, comparable with other reports for the same five-metal high entropy alloy configuration. Localized microwave plasma particle sintering is evident from the microstructure. These results highlight the promising potential of microwave plasma as a fast, economical, and flexible processing tool for high entropy alloys.

     
    more » « less
    Free, publicly-accessible full text available March 4, 2025
  2. Metal oxide thermal reduction, enabled by microwave-induced plasma, was used to synthesize high entropy borides (HEBs). This approach capitalized on the ability of a microwave (MW) plasma source to efficiently transfer thermal energy to drive chemical reactions in an argon-rich plasma. A predominantly single-phase hexagonal AlB2-type structural characteristic of HEBs was obtained by boro/carbothermal reduction as well as by borothermal reduction. We compare the microstructural, mechanical, and oxidation resistance properties using the two different thermal reduction approaches (i.e., with and without carbon as a reducing agent). The plasma-annealed HEB (Hf0.2, Zr0.2, Ti0.2, Ta0.2, Mo0.2)B2 made via boro/carbothermal reduction resulted in a higher measured hardness (38 ± 4 GPa) compared to the same HEB made via borothermal reduction (28 ± 3 GPa). These hardness values were consistent with the theoretical value of ~33 GPa obtained by first-principles simulations using special quasi-random structures. Sample cross-sections were evaluated to examine the effects of the plasma on structural, compositional, and mechanical homogeneity throughout the HEB thickness. MW-plasma-produced HEBs synthesized with carbon exhibit a reduced porosity, higher density, and higher average hardness when compared to HEBs made without carbon. 
    more » « less