skip to main content


Search for: All records

Award ID contains: 2203166

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ammonia is considered a basic building block for fertilizers. Also, it is an economically efficient and technologically suitable solution for energy storage and transportation. Non-thermal plasma-driven catalysis powered by renewable energy is considered as a green alternative to the conventional Haber-Bosch process for ammonia synthesis. The main challenge in this electron-mediated route is the low ammonia synthesis production, given the plasma-induced decomposition of the freshly generated ammonia during the reaction. Herein we report the plasma-assisted ammonia synthesis in a dielectric barrier discharge reactor packed with CC3 crystals, a prototypical porous organic cage, and a molecular-sieve membrane fabricated from the same CC3 material. The CC3 crystals delivered the highest ammonia synthesis rate (0.06 μmol min−1 m−2) compared to other microporous catalysts such as zeolite (SAPO-34) and metal-organic frameworks (ZIF-8, ZIF-67) (below 0.02 μmol min−1 m−2). The CC3 porous cage with well-defined octahedral crystal geometry provides partial protection while the CC3 membrane offers both adsorption and separation effects for the freshly formed ammonia from its in-situ decomposition, securing an excellent ammonia synthesis rate of 20.3 μmol min−1 m−2. The findings from this work unfolds novel insights into rational designs of advanced porous catalyst and membrane for plasma-driven catalytic ammonia synthesis in a sustainable and efficient way. 
    more » « less
  2. The synergistic combination of solid catalysts and plasma for the synthesis of ammonia has recently attracted considerable scientific interest. Herein, we explore MgTiO3, CaTiO3, SrTiO3, and BaTiO3 perovskites as effective catalysts for the synthesis and decomposition of ammonia via cold plasma. MgTiO3 perovskite, which contains the most electronegative alkaline metal of all the studied perovskites, resulted in the highest ammonia synthesis rate with a value of 12.16 μmol min−1 m−2, which is around 50 times the value of only plasma, 0.24 μmol min−1. The high electronegativity of Mg can be assisting the dissociation of the triple nitrogen covalent bond. This intrinsic property of Mg perovskite added to the homogeneity of the plasma arising from the dielectric constant value of this perovskite might be synergistically responsible for the high ammonia synthesis rate observed. Interestingly, ammonia production over MgTiO3 perovskite is almost double the performance of traditional oxides and some microporous crystals. We also explored the ammonia decomposition reaction due to the possibility of the importance of the reversible reaction owing to the electron collision with the ammonia molecules formed. Ammonia decomposition increased as plasma power increased. This points out the benefit of running at low plasma power and the need to design plasma reactors where the newly formed ammonia molecules can be removed from the reaction system to avoid further electron collision. The highest ammonia decomposition yield was 44.37% at 20 W corresponding to an energy yield of 5.06 g-NH3 kW h−1. 
    more » « less
  3. Non-thermal plasma Methane capture Carbon dioxide capture Metal organic framework Methanol synthesis Atmospheric remediation 1. Introduction The stabilization of CO2 and CH4 concentrations in the air to control global warming is accelerating. There are continued efforts to develop and optimize different technologies for capture and sequestration of these greenhouse gases from industrial emission sites. From these gases, CH4 is the most dominant anthropogenic greenhouse gas (after CO2). Methane can react with nitrogen oxides leading to tropospheric ozone pollution and posses a higher global warming potential (GWP) than CO2. It is 84 times more potent than CO2 over the first 20 years after release and ~28 times more potent after a century. Methane concentrations could be restored to preindustrial levels by removing ~3.2 of the 5.3 Gt of CH4 currently in the atmosphere [1]. Rather than capturing and storing the methane, CH4 could be oxidized to CO2, through the ther- modynamically favorable reaction: CH4 + 2O2 → CO2 + 2H2O; ΔHrx = –803 kJ mol–1. With the possible production of valuable condensates such as form- aldehyde and methanol when employing different reaction conditions (i. e., gas ratio, oxidant type, temperature) and rational selected catalysts. The large activation barrier associated with splitting methane’s C– H * Corresponding author. E-mail address: Maria.CarreonGarciduenas@sdsmt.edu (M.L. Carreon). https://doi.org/10.1016/j.jcou.2021.101642 The direct capture of CO2 and CH4 from the atmosphere to stabilize the concentrations in the air to control global warming is accelerating. There are continued efforts to develop and optimize different technologies for capture and sequestration of these greenhouse gases from industrial emission sites. In this work we employed MOF-177 as an efficient CO2 and CH4 adsorbent at standard temperature and pressure conditions. We demonstrated the possibility of desorbing the gases under study when employing gentle plasma pulses of He. Moreover, we per- formed the synthesis of methanol from CH4 using O2 and CO2 as oxidants respectively in the presence of MOF- 177. We observed the highest conversion for the CH4 + O2 system when employing the MOF-177 at (5:1) (CH4: O2) flow ratio of 23.5 % and methanol selectivity of 17.65 %. While the best performance for the CH4 + CO2 system at the same conditions i.e., (5:1) (CH4: O2) flow ratio was 18.4 % for the methane conversion and 11.68 % for the selectivity towards methanol. We expect this preliminary understanding of the adsorption-reaction system under non-thermal plasma environment can lead to future atmospheric remediation technologies. 
    more » « less
  4. Microporous crystals have emerged as highly appealing catalytic materials for the plasma catalytic synthesis of ammonia. Herein, we demonstrate that zeolitic imidazolate frameworks (ZIFs) can be employed as efficient catalysts for the cold plasma ammonia synthesis using an atmospheric dielectric barrier discharge reactor. We studied two prototypical ZIFs denoted as ZIF-8 and ZIF-67, with a uniform window pore aperture of 3.4 Å. The resultant ZIFs displayed ammonia synthesis rates as high as 42.16 μmol NH3/min gcat. ZIF-8 displayed remarkable stability upon recycling. The dipole−dipole inter- actions between the polar ammonia molecules and the polar walls of the studied ZIFs led to relatively low ammonia uptakes, low storage capacity, and high observed ammonia synthesis rates. Both ZIFs outperform other microporous crystals including zeolites and conventional oxides in terms of ammonia production. Furthermore, we demonstrate that the addition of argon to the reactor chamber can be an effective strategy to improve the plasma environment. Specifically, the presence of argon helped to improve the plasma uniformity, making the reaction system more energy efficient by operating at a low specific energy input range allowing abundant formation of nitrogen vibrational species. KEYWORDS: nonthermal plasma, plasma catalysis, ammonia synthesis, zeolitic imidazolate frameworks, ammonia adsorption effect 
    more » « less