skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2203242

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This article discusses the current state of development, open research opportunities, and application perspectives of electric‐field‐controlled magnetic tunnel junctions that use the voltage‐controlled magnetic anisotropy effect to control their magnetization. The integration of embedded magnetic random‐access memory (MRAM) into mainstream semiconductor foundry manufacturing opens new possibilities for the development of energy‐efficient, high‐performance, and intelligent computing systems. The current generation of MRAM, which uses the current‐controlled spin‐transfer torque (STT) effect to write information, has gained traction due to its nonvolatile data retention and lower integration cost compared to embedded Flash. However, scaling MRAM to high bit densities will likely require a transition from current‐controlled to voltage‐controlled operation. In this perspective, an overview of voltage‐controlled magnetic anisotropy (VCMA) as a promising beyond‐STT write mechanism for MRAM devices is provided and recent advancements in developing VCMA‐MRAM devices with perpendicular magnetization are highlighted. Starting from the fundamental mechanisms, the key remaining challenges of VCMA‐MRAM, such as increasing the VCMA coefficient, controlling the write error rate, and achieving field‐free VCMA switching are discussed. Then potential solutions are discussed and open research questions are highlighted. Lastly, prospective applications of voltage‐controlled magnetic tunnel junctions (VC‐MTJs) in security applications, extending beyond their traditional role as memory devices are explored. 
    more » « less
  2. Abstract Magnetic random-access memory (MRAM) based on voltage-controlled magnetic anisotropy in magnetic tunnel junctions (MTJs) is a promising candidate for high-performance computing applications, due to its lower power consumption, higher bit density, and the ability to reduce the access transistor size when compared to conventional current-controlled spin-transfer torque MRAM. The key to realizing these advantages is to have a low MTJ switching voltage. Here, we report a perpendicular MTJ structure with a high voltage-controlled magnetic anisotropy coefficient ~130 fJ/Vm and high tunnel magnetoresistance exceeding 150%. Owing to the high voltage-controlled magnetic anisotropy coefficient, we demonstrate sub-nanosecond precessional switching of nanoscale MTJs with diameters of 50 and 70 nm, using a voltage lower than 1 V. We also show scaling of this switching mechanism down to 30 nm MTJs, with voltages close to 2 V. The results pave the path for the future development and application of voltage-controlled MRAMs and spintronic devices in emerging computing systems. 
    more » « less