skip to main content

Search for: All records

Award ID contains: 2203262

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Graph representation learning has attracted tremendous attention due to its remarkable performance in many real-world applications. However, prevailing supervised graph representation learning models for specific tasks often suffer from label sparsity issue as data labeling is always time and resource consuming. In light of this, few-shot learning on graphs (FSLG), which combines the strengths of graph representation learning and few-shot learning together, has been proposed to tackle the performance degradation in face of limited annotated data challenge. There have been many studies working on FSLG recently. In this paper, we comprehensively survey these work in the form of a series of methods and applications. Specifically, we first introduce FSLG challenges and bases, then categorize and summarize existing work of FSLG in terms of three major graph mining tasks at different granularity levels, i.e., node, edge, and graph. Finally, we share our thoughts on some future research directions of FSLG. The authors of this survey have contributed significantly to the AI literature on FSLG over the last few years.

    more » « less
  2. Prescription (aka Rx) drugs can be easily overprescribed and lead to drug abuse or opioid overdose. Accordingly, a state-run prescription drug monitoring program (PDMP) in the United States has been developed to reduce overprescribing. However, PDMP has limited capability in detecting patients' potential overprescribing behaviors, impairing its effectiveness in preventing drug abuse and overdose in patients. In this paper, we propose a novel model RxNet, which builds 1) a dynamic heterogeneous graph to model Rx refills that are essentially prescribing and dispensing (P&D) relationships among various patients, 2) an RxLSTM network to explore the dynamic Rx-refill behavior and medical condition variation of patients, and 3) a dosing-adaptive network to extract and recalibrate dosing patterns and obtain the refined patient representations which are finally utilized for overprescribing detection. The extensive experimental results on a one-year state-wide PDMP data demonstrate that RxNet consistently outperforms state-of-the-art methods in predicting patients at high risk of opioid overdose and drug abuse.

    more » « less
  3. The forecasting of significant societal events such as civil unrest and economic crisis is an interesting and challenging problem which requires both timeliness, precision, and comprehensiveness. Significant societal events are influenced and indicated jointly by multiple aspects of a society, including its economics, politics, and culture. Traditional forecasting methods based on a single data source find it hard to cover all these aspects comprehensively, thus limiting model performance. Multi-source event forecasting has proven promising but still suffers from several challenges, including (1) geographical hierarchies in multi-source data features, (2) hierarchical missing values, (3) characterization of structured feature sparsity, and (4) difficulty in model’s online update with incomplete multiple sources. This article proposes a novel feature learning model that concurrently addresses all the above challenges. Specifically, given multi-source data from different geographical levels, we design a new forecasting model by characterizing the lower-level features’ dependence on higher-level features. To handle the correlations amidst structured feature sets and deal with missing values among the coupled features, we propose a novel feature learning model based on an N th-order strong hierarchy and fused-overlapping group Lasso. An efficient algorithm is developed to optimize model parameters and ensure global optima. More importantly, to enable the model update in real time, the online learning algorithm is formulated and active set techniques are leveraged to resolve the crucial challenge when new patterns of missing features appear in real time. Extensive experiments on 10 datasets in different domains demonstrate the effectiveness and efficiency of the proposed models. 
    more » « less