skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2203441

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. People with blindness have limited access to the high-resolution graphical data and imagery of science. Here, a lithophane codex is reported. Its pages display tactile and optical readouts for universal visualization of data by persons with or without eyesight. Prototype codices illustrated microscopy of butterfly chitin—fromN-acetylglucosamine monomer to fibril, scale, and whole insect—and were given to high schoolers from the Texas School for the Blind and Visually Impaired. Lithophane graphics of Fischer-Spier esterification reactions and electron micrographs of biological cells were also 3D-printed, along with x-ray structures of proteins (as millimeter-scale 3D models). Students with blindness could visualize (describe, recall, distinguish) these systems—for the first time—at the same resolution as sighted peers (average accuracy = 88%). Tactile visualization occurred alongside laboratory training, synthesis, and mentoring by chemists with blindness, resulting in increased student interest and sense of belonging in science. 
    more » « less
  2. The heterodimerization of wild-type (WT) Cu, Zn superoxide dismutase-1 (SOD1) and mutant SOD1 might be a critical step in the pathogenesis of SOD1-linked amyotrophic lateral sclerosis (ALS). Post-translational modifications that accelerate SOD1 heterodimerization remain unidentified. Here, we used capillary electrophoresis to quantify the effect of cysteine-111 oxidation on the rate and free energy of ALS mutant/WT SOD1 heterodimerization. The oxidation of Cys111-β-SH to sulfinic and sulfonic acid (by hydrogen peroxide) increased rates of heterodimerization (with unoxidized protein) by ∼3-fold. Cysteine oxidation drove the equilibrium free energy of SOD1 heterodimerization by up to ΔΔG = −5.11 ± 0.36 kJ mol–1. Molecular dynamics simulations suggested that this enhanced heterodimerization, between oxidized homodimers and unoxidized homodimers, was promoted by electrostatic repulsion between the two “dueling” Cys111-SO2–/SO3–, which point toward one another in the homodimeric state. Together, these results suggest that oxidation of Cys-111 promotes subunit exchange between oxidized homodimers and unoxidized homodimers, regardless of whether they are mutant or WT dimers. 
    more » « less
  3. Abstract The electrostatic effects of protein crowding have not been systematically explored. Rather, protein crowding is generally studied with co‐solvents or crowders that are electrostatically neutral, with no methods to measure how the net charge ( Z ) of a crowder affects protein function. For example, can the activity of an enzyme be affected electrostatically by the net charge of its neighbor in crowded milieu? This paper reports a method for crowding proteins of different net charge to an enzyme via semi‐random chemical crosslinking. As a proof of concept, RNase A was crowded (at distances ≤ the Debye length) via crosslinking to different heme proteins with Z  = +8.50 ± 0.04, Z  = +6.39 ± 0.12, or Z  = −10.30 ± 1.32. Crosslinking did not disrupt the structure of proteins, according to amide H/D exchange, and did not inhibit RNase A activity. For RNase A, we found that the electrostatic environment of each crowded neighbor had significant effects on rates of RNA hydrolysis. Crowding with cationic cytochrome c led to increases in activity, while crowding with anionic “supercharged” cytochrome c or myoglobin diminished activity. Surprisingly, electrostatic crowding effects were amplified at high ionic strength ( I  = 0.201 M) and attenuated at low ionic strength ( I  = 0.011 M). This salt dependence might be caused by a unique set of electric double layers at the dimer interspace (maximum distance of 8 Å, which cannot accommodate four layers). This new method of crowding via crosslinking can be used to search for electrostatic effects in protein crowding. 
    more » « less