skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2203589

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 17, 2026
  2. Recent advances in scanning probe microscopy methodology have enabled the measurement of tip−sample interactions with picometer accuracy in all three spatial dimensions, thereby providing a detailed site-specific and distance-dependent picture of the related properties. This paper explores the degree of detail and accuracy that can be achieved in locally quantifying probe−molecule interaction forces and energies for adsorbed molecules. Toward this end, cobalt phthalocyanine (CoPc), a promising CO2 reduction catalyst, was studied on Ag(111) as a model system using low-temperature, ultrahigh vacuum noncontact atomic force microscopy. Data were recorded as a function of distance from the surface, from which detailed three-dimensional maps of the molecule’s interaction with the tip for normal and lateral forces as well as the tip−molecule interaction potential were constructed. The data were collected with a CO molecule at the tip apex, which enabled a detailed visualization of the atomic structure. Determination of the tip−substrate interaction as a function of distance allowed isolation of the molecule−tip interactions; when analyzing these in terms of a Lennard−Jones-type potential, the atomically resolved equilibrium interaction energies between the CO tethered to the tip and the CoPc molecule could be recovered. Interaction energies peaked at less than 160 meV, indicating a physisorption interaction. As expected, the interaction was weakest at the aromatic hydrogens around the periphery of the molecule and strongest surrounding the metal center. The interaction, however, did not peak directly above the Co atom but rather in pockets surrounding it. 
    more » « less