skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2203905

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Coacervation of charged polymer chains has been a topic of major interest both in polymer and biological sciences, as it is a subset of a phenomenon called liquid-liquid (LLPS) phase separation. In this process a polymer-rich phase separates from the polymer-lean supernatant while still maintaining its liquid-like properties. LLPS has been shown to play a crucial role in cellular homeostasis by driving the formation of membraneless organelles. It also has the potential to be harnessed to aid in novel therapeutical applications. Recent studies have demonstrated that there is no one simple mechanism which drives LLPS, which is instead a result of the combined effect of electrostatic, dipolar, hydrophobic, and other weak interactions. Using coarse-grained polymer simulations we investigate the relatively unexplored effects of monomer polarizability and spatially varying dielectric constant on LLPS propensity, and these factors affect the properties of the resulting condensates. In order to produce spatial variations in the dielectric constant, all our simulations include explicit solvent and counterions. We demonstrate that polarizability has only a minor effect on the bulk behaviour of the condensates but plays a major role when ion partitioning and microstructure are considered. We observe that the major contribution comes from the nature of the neutral blocks as endowing them with an induced dipole changes their character from hydrophobic to hydrophilic. We hypothesize that the results of this work can aid in guiding future studies concerned with LLPS by providing a general framework and by highlighting important factors which influence LLPS. 
    more » « less
  2. In this paper, we announce the public release of a massively parallel, graphics processing unit (GPU)-accelerated software, which is the first to combine both coarse-grained particle simulations and field-theoretic simulations in one simulation package. MATILDA.FT (Mesoscale, Accelerated, Theoretically Informed, Langevin, Dissipative particle dynamics, and Field Theory) was designed from the ground-up to run on CUDA-enabled GPUs with Thrust library acceleration, enabling it to harness the possibility of massive parallelism to efficiently simulate systems on a mesoscopic scale. It has been used to model a variety of systems, from polymer solutions and nanoparticle-polymer interfaces to coarse-grained peptide models and liquid crystals. MATILDA.FT is written in CUDA/C++ and is object oriented, making its source-code easy to understand and extend. Here, we present an overview of the currently available features, and the logic of parallel algorithms and methods. We provide the necessary theoretical background and present examples of systems simulated using MATILDA.FT as the simulation engine. The source code, along with the documentation, additional tools, and examples, can be found on the GitHub MATILDA.FT repository. 
    more » « less