skip to main content


Search for: All records

Award ID contains: 2203933

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Adding Fe3O4nanoparticles to composites of [Fe(Htrz)2(trz)](BF4) spin-crossover polymer and polyaniline (PANI) drives a phase separation of both and restores the molecular structure and cooperative effects of the spin-crossover polymer without compromising the increased conductivity gained through the addition of PANI. We observe an increased on-off ratio for the DC conductivity owing to an enlarged off state resistivity and a 20 times larger AC conductivity of the on state compared with DC values. The Fe3O4nanoparticles, primarily confined to the [Fe(Htrz)2(trz)](BF4) phase, are ferromagnetically coupled to the local moment of the spin-crossover molecule suggesting the existence of an exchange interaction between both components.

     
    more » « less
  2. Abstract

    We study the influence of defects in Co/Pt multilayers on the room-temperature magnetization reversal and relaxation mechanisms via angle-dependent magnetic viscosity and coercive field measurements. The data reveal a transition from pinning-dominated domain wall propagation to a sequence of pinning-dominated and uniform switching, with increasing tilt away from the normal direction. The leading role of the dendritic domain wall propagation in the nanogranular exchange-coupled films is corroborated by the scaling of relaxation times, the angular dependence of the coercive field, and Kerr microscopy.

     
    more » « less
  3. Abstract

    Metal-organic decomposition epitaxy is an economical wet-chemical approach suitable to synthesize high-quality low-spin-damping films for resonator and oscillator applications. This work reports the temperature dependence of ferromagnetic resonances and associated structural and magnetic quantities of yttrium iron garnet nanofilms that coincide with single-crystal values. Despite imperfections originating from wet-chemical deposition and spin coating, the quality factor for out-of-plane and in-plane resonances approaches 600 and 1000, respectively, at room temperature and 40 GHz. These values increase with temperature and are 100 times larger than those offered by commercial devices based on complementary metal-oxide semiconductor voltage-controlled oscillators at comparable production costs.

     
    more » « less
  4. Abstract

    Spontaneous emulsification, resulting from the assembly and accumulation of surfactants at liquid–liquid interfaces, is an interfacial instability where microdroplets are generated and diffusively spread from the interface until complete emulsification. Here, it is shown that an external magnetic field can modulate the assembly of paramagnetic nanoparticle surfactants (NPSs) at liquid–liquid interfaces to trigger an oversaturation in the areal density of the NPSs at the interface, as evidenced by a marked reduction in the interfacial tension, γ, and corroborated with a magnetostatic continuum theory. Despite the significant reduction in γ, the presence of the magnetic field does not cause stable interfaces to become unstable. Upon rapid removal of the field, however, an explosive ejection of a plume of microdroplets from the surface occurs, a dynamical interfacial instability which is termed explosive emulsification. This explosive event rapidly reduces the areal density of the NPSs to its pre‐field level, stabilizing the interface. The ability to externally suppress or trigger the explosive emulsification and controlled generation of tens of thousands of microdroplets, uncovers an efficient energy storage and release process, that has potential applications for controlled and directed delivery of chemicals and remotely controlled soft microrobots, taking advantage of the ferromagnetic nature of the microdroplets.

     
    more » « less
  5. An active droplet system, programmed to repeatedly move autonomously at a specific velocity in a well‐defined direction, is demonstrated. Coulombic energy is stored in oversaturated interfacial assemblies of charged nanoparticle‐surfactants by an applied DC electric field and can be released on demand. Spontaneous emulsification is suppressed by an increase in the stiffness of the oversaturated assemblies. Rapidly removing the field releases the stored energy in an explosive event that propels the droplet, where thousands of charged microdroplets are ballistically ejected from the surface of the parent droplet. The ejection is made directional by a symmetry breaking of the interfacial assembly, and the combined interaction force of the microdroplet plume on one side of the droplet propels the droplet distances tens of times its size, making the droplet active. The propulsion is autonomous, repeatable, and agnostic to the chemical composition of the nanoparticles. The symmetry‐breaking in the nanoparticle assembly controls the microdroplet velocity and direction of propulsion. This mechanism of droplet propulsion will advance soft micro‐robotics, establishes a new type of active matter, and introduces new vehicles for compartmentalized delivery. 
    more » « less
    Free, publicly-accessible full text available February 28, 2025
  6. This article discusses the physical and mathematical background of phase contrast imaging with in‑line electron holography from a physics rather than a microscopy perspective and showcases the strength of non‑iterative and iterative approaches by application to magnetism research. A comprehensive derivation of magnetic and electric phase shift due to electromagnetic interaction with matter and electron wave propagation is presented as the foundation for phase retrieval algorithms based on the transport‑of‑intensity equation and Gerchberg–Saxton—an iterative exit wave reconstruction algorithm. The strength and potential of both algorithms are highlighted by experimental and numerical quantitative comparison using non‑collinear spin textures. Although the focus of this work is on magnetism research, the indifference of the exit wave reconstruction to the origin of the phase shift ensures applicability to study spatial variations in both electric and spin distributions in quantum, energy, and magnetic materials. 
    more » « less
    Free, publicly-accessible full text available December 14, 2024