Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Labeling and detection of biomoleculesin vitroandin vivois essential to many areas of biomedical science. Fluorophores stand as indispensable tools within chemical biology, underscoring the importance of fine‐tuning their optical properties. This review focuses on methods for optimizing emission wavelength, quantum yield and photostability. We focus not just on the trends, but the fundamental physical organic chemistry concepts that inform the connection between molecular structure and fluorescent properties. This approach offers an essential understanding of fluorescence, enabling readers to develop a systematic analytical framework for thinking about fluorescence. Furthermore, an evaluation of newer non‐planar fluorophores shines light on the bright future of fluorescent molecules.more » « less
-
Abstract Mechanically interlocked molecules (MIMs) represent an exciting yet underexplored area of research in the context of carbon nanoscience. Recently, work from our group and others has shown that small carbon nanotube fragments—[n]cycloparaphenylenes ([n]CPPs) and related nanohoop macrocycles—may be integrated into mechanically interlocked architectures by leveraging supramolecular interactions, covalent tethers, or metal‐ion templates. Still, available synthetic methods are typically difficult and low yielding, and general methods that allow for the creation of a wide variety of these structures are limited. Here we report an efficient route to interlocked nanohoop structures via the active template Cu‐catalyzed azide‐alkyne cycloaddition (AT−CuAAC) reaction. With the appropriate choice of substituents, a macrocyclic precursor to 2,2′‐bipyridyl embedded [9]CPP (bipy[9]CPP) participates in the AT−CuAAC reaction to provide [2]rotaxanes in near‐quantitative yield, which can then be converted into the fully π‐conjugated catenane structures. Through this approach, two nanohoop[2]catenanes are synthesized which consist of a bipy[9]CPP catenated with either Tz[10]CPP or Tz[12]CPP (whereTzdenotes a 1,2,3‐triazole moiety replacing one phenylene ring in the [n]CPP backbone).more » « less
-
Abstract Deriving diverse compound libraries from a single substrate in high yields remains to be a challenge in cycloparaphenylene chemistry. In here, a strategy for the late‐stage functionalization of shape‐persistent alkyne‐containing cycloparaphenylene has been explored using readily available azides. The copper‐free [3+2]azide‐alkyne cycloaddition provided high yields (>90 %) in a single reaction step. Systematic variation of the azides from electron‐rich to ‐deficient shines light on how peripheral substitution influences the characteristics of the resulting adducts. We find that among the most affected properties are the molecular shape, the oxidation potential, excited state features, and affinities towards different fullerenes. Joint experimental and theoretical results are presented including calculations with the state‐of‐the‐art, artificial intelligence‐enhanced quantum mechanical method 1 (AIQM1).more » « less
An official website of the United States government
