skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2204230

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The use of Coincidence Doppler-Broadened (CDB) positron annihilation spectra for surface analysis requires ensuring that a significant fraction of the annihilation signal originates from positrons annihilating at the surface. We present measurements of CDB spectra obtained using a high-purity germanium (HPGe) detector in coincidence with a sodium iodide (NaI) detector for a series of incident positron beam energies ranging from 2 eV to 20 keV on multilayer graphene (6–8 layers) on copper. The CDB data were analyzed by fitting the Doppler spectra using a linear combination of spectra derived from measured data obtained at the incident beam energies mentioned together with a Gaussian function representing the spectrum associated with para-positronium decay. These fits were used to determine the fraction of incident positrons that annihilate at the surface and in the bulk. We compare the results obtained from fitting the full Doppler-broadened spectra with those derived from a VEPFIT analysis of the S parameters as a function of beam energy, using the same set of Doppler spectra. Both approaches indicate that most annihilation events occur at the surface for beam energies below 5 keV. However, the results from full spectrum fitting suggest a significantly larger bulk annihilation fraction than VEPFIT in the 100 eV to 5 keV range, highlighting the importance of accounting for bulk contributions when using CDB for surface analysis at beam energies above 100 eV. 
    more » « less
    Free, publicly-accessible full text available July 21, 2026