Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Despite the critical role played by carbon monoxide (CO) in physiological and pathological signaling events, current approaches to deliver this messenger molecule are often accompanied by off‐target effects and offer limited control over release kinetics. To address these challenges, we develop an electrochemical approach that affords on‐demand release of CO through reduction of carbon dioxide (CO2) dissolved in the extracellular space. Electrocatalytic generation of CO by cobalt phthalocyanine molecular catalysts modulates signaling pathways mediated by a CO receptor soluble guanylyl cyclase. Furthermore, by tuning the applied voltage during electrocatalysis, we explore the effect of the CO release kinetics on CO‐dependent neuronal signaling. Finally, we integrate components of our electrochemical platform into microscale fibers to produce CO in a spatially‐restricted manner and to activate signaling cascades in the targeted cells. By offering on‐demand local synthesis of CO, our approach may facilitate the studies of physiological processes affected by this gaseous molecular messenger.more » « less
-
Abstract The Tafel slope is a key parameter often quoted to characterize the efficacy of an electrochemical catalyst. In this paper, we develop a Bayesian data analysis approach to estimate the Tafel slope from experimentally-measured current-voltage data. Our approach obviates the human intervention required by current literature practice for Tafel estimation, and provides robust, distributional uncertainty estimates. Using synthetic data, we illustrate how data insufficiency can unknowingly influence current fitting approaches, and how our approach allays these concerns. We apply our approach to conduct a comprehensive re-analysis of data from the CO 2 reduction literature. This analysis reveals no systematic preference for Tafel slopes to cluster around certain "cardinal values” (e.g. 60 or 120 mV/decade). We hypothesize several plausible physical explanations for this observation, and discuss the implications of our finding for mechanistic analysis in electrochemical kinetic investigations.more » « less
-
Although electrocarboxylation reactions use CO 2 as a renewable synthon and can incorporate renewable electricity as a driving force, the overall sustainability and practicality of this process is limited by the use of sacrificial anodes such as magnesium and aluminum. Replacing these anodes for the carboxylation of organic halides is not trivial because the cations produced from their oxidation inhibit a variety of undesired nucleophilic reactions that form esters, carbonates, and alcohols. Herein, a strategy to maintain selectivity without a sacrificial anode is developed by adding a salt with an inorganic cation that blocks nucleophilic reactions. Using anhydrous MgBr 2 as a low-cost, soluble source of Mg 2+ cations, carboxylation of a variety of aliphatic, benzylic, and aromatic halides was achieved with moderate to good (34–78%) yields without a sacrificial anode. Moreover, the yields from the sacrificial-anode-free process were often comparable or better than those from a traditional sacrificial-anode process. Examining a wide variety of substrates shows a correlation between known nucleophilic susceptibilities of carbon–halide bonds and selectivity loss in the absence of a Mg 2+ source. The carboxylate anion product was also discovered to mitigate cathodic passivation by insoluble carbonates produced as byproducts from concomitant CO 2 reduction to CO, although this protection can eventually become insufficient when sacrificial anodes are used. These results are a key step toward sustainable and practical carboxylation by providing an electrolyte design guideline to obviate the need for sacrificial anodes.more » « less
An official website of the United States government
