skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2204912

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Free, publicly-accessible full text available December 1, 2025
  3. We study the Muskat problem for one fluid in an arbitrary dimension, bounded below by a flat bed and above by a free boundary given as a graph. In addition to a fixed uniform gravitational field, the fluid is acted upon by a generic force field in the bulk and an external pressure on the free boundary, both of which are posited to be in traveling wave form. We prove that, for sufficiently small force and pressure data in Sobolev spaces, there exists a locally unique traveling wave solution in Sobolev-type spaces. The free boundary of the traveling wave solutions is either periodic or asymptotically flat at spatial infinity. Moreover, we prove that small periodic traveling wave solutions induced by external pressure only are asymptotically stable. These results provide the first class of nontrivial stable solutions for the problem. 
    more » « less
  4. This paper concerns the construction of traveling wave solutions to the free boundary incompressible Navier-Stokes system. We study a single layer of viscous fluid in a strip-like domain that is bounded below by a flat rigid surface and above by a moving surface. The fluid is acted upon by a bulk force and a surface stress that are stationary in a coordinate system moving parallel to the fluid bottom. We also assume that the fluid is subject to a uniform gravitational force that can be resolved into a sum of a vertical component and a component lying in the direction of the traveling wave velocity. This configuration arises, for instance, in the modeling of fluid flow down an inclined plane. We also study the effect of periodicity by allowing the fluid cross section to be periodic in various directions. The horizontal component of the gravitational field gives rise to stationary solutions that are pure shear flows, and we construct our solutions as perturbations of these by means of an implicit function argument. An essential component of our analysis is the development of some new functional analytic properties of a scale of anisotropic Sobolev spaces, including that these spaces are an algebra in the supercritical regime, which may be of independent interest. 
    more » « less