skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2205084

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract ContextYouth with type 1 diabetes (T1D) struggle to meet and sustain hemoglobin A1c (HbA1c) targets. Youth enrolled in the Pilot 4T Study improved HbA1c by 0.5% at 1 year, compared to historical controls. ObjectiveTo assess 3 years of glycemic outcomes in the Pilot 4T Study. MethodsThe Pilot 4T Extension cohort was prospectively followed to determine changes in HbA1c and continuous glucose monitoring (CGM) metrics over 3 years at the Stanford Medicine Children's Health Diabetes Clinic. Youth with T1D in the Pilot 4T Study enrolled in the extension phase started CGM in the first month of diabetes diagnosis, received intensified education and remote patient monitoring (RPM) weekly for the first year of diabetes diagnosis, and monthly RPM in the extension phase. HbA1c and CGM metrics were evaluated over the first 3 years of diagnosis. ResultsIn the Pilot 4T cohort, 78.5% (n = 102) of participants enrolled in the study extension phase and were followed through 3 years. The adjusted difference in HbA1c at 3 years was 1.2% (95% CI 0.7%-1.7%) lower in the Pilot 4T cohort than in the Historical cohort. In the Pilot 4T cohort, 68% and 37% met the <7.5% and <7% HbA1c targets at 3 years, respectively, compared to 37% and 20% in the Historical cohort. ConclusionYouth with T1D in the Pilot 4T extension phase sustained improvements in HbA1c over 3 years. Focusing resources on intensive management during the first year after T1D diagnosis may impact long-term glycemia. 
    more » « less
    Free, publicly-accessible full text available July 10, 2026
  2. Introduction:The Virtual Diabetes Specialty Clinic (VDiSC) study demonstrated the feasibility of providing comprehensive diabetes care entirely virtually by combining virtual visits with continuous glucose monitoring support and remote patient monitoring (RPM). However, the financial sustainability of this model remains uncertain. Methods:We developed a financial model to estimate the variable costs and revenues of virtual diabetes care, using visit data from the 234 VDiSC participants with type 1 or type 2 diabetes. Data included virtual visits with certified diabetes care and education specialists (CDCES), endocrinologists, and behavioral health services (BHS). The model estimated care utilization, variable costs, reimbursement revenue, gross profit, and gross profit margin per member, per month (PMPM) for privately insured, publicly insured, and overall clinic populations (75% privately insured). We performed two-way sensitivity analyses on key parameters. Results:Gross profit and gross profit margin PMPM (95% confidence interval) were estimated at $−4 ($−14.00 to $5.68) and −4% (−3% to −6%) for publicly insured patients; $267.26 ($256.59-$277.93) and 73% (58%-88%) for privately insured patients; and $199.41 ($58.43-$340.39) and 67% (32%-102%) for the overall clinic. Profits were primarily driven by CDCES visits and RPM. Results were sensitive to insurance mix, cost-to-charge ratio, and commercial-to-Medicare price ratio. Conclusions:Virtual diabetes care can be financially viable, although profitability relies on privately insured patients. The analysis excluded fixed costs of clinic infrastructure, and securing reimbursement may be challenging in practice. The financial model is adaptable to various care settings and can serve as a planning tool for virtual diabetes clinics. 
    more » « less
    Free, publicly-accessible full text available May 13, 2026
  3. Abstract Urgent pediatric hospital readmissions are common, costly, and often preventable. Existing prediction models, based solely on discharge data, fail to accurately identify pediatric patients at-risk or urgent readmission. Remote patient monitoring (RPM) leverages wearable technology to provide real-time health data, enabling care teams to detect and respond to early signs of clinical deterioration. Emerging evidence suggests RPM may be a promising strategy to improve pediatric postdischarge outcomes and reduce urgent hospital readmissions. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  4. Abstract AimsPsychosocial impacts of early continuous glucose monitoring (CGM) initiation in youth soon after type 1 diabetes diagnosis are underexplored. We report parent/guardian and youth patient‐reported outcomes (PROs) that measure psychosocial states for families in 4T Study 1. Materials and MethodsOf the 133 families in the 4T Study 1, 132 parent/guardian and 66 youth (≥11 years) were eligible to complete PROs. PROs evaluated included diabetes distress, global health, diabetes technology attitudes and CGM benefits/burden scales. Temporal trends of PROs were assessed via generalised linear mixed effects regression. Sociodemographic and clinical characteristics associated with PROs were evaluated. Psychosocial associations were evaluated by regressing parental distress on youth distress. ResultsPRO completion rates were 85.6% and varied between parent/guardian and youth. Throughout the study, parent/guardian and youth distress remained low and youth had increased technology acceptance (p = 0.046). Each additional month of CGM use was associated with a 14% decrease in the odds of experiencing diabetes distress (aOR = 0.86, 95% CI [0.76, 0.99],p = 0.029). Additionally, higher time‐in‐range was associated with decreased diabetes distress (p = 0.048). Age, diabetic ketoacidosis at diagnosis, gender, ethnicity, insurance status and language spoken were not associated with PROs. ConclusionsInitiation of CGM shortly after type 1 diabetes diagnosis does not have unintended negative psychological consequences. Longer duration of CGM use was associated with decreased youth distress and technology acceptance increased throughout the study. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  5. Background:Youth with type 1 diabetes (T1D) and public insurance have lower diabetes technology use. This pilot study assessed the feasibility of a program to support continuous glucose monitor (CGM) use with remote patient monitoring (RPM) to improve glycemia for youth with established T1D and public insurance. Methods:From August 2020 to June 2023, we provided CGM with RPM support via patient portal messaging for youth with established T1D on public insurance with challenges obtaining consistent CGM supplies. We prospectively collected hemoglobin A1c(HbA1c), standard CGM metrics, and diabetes technology use over 12 months. Results:The cohort included 91 youths with median age at enrollment 14.7 years, duration of diabetes 4.4 years, 33% non-English speakers, and 44% Hispanic. Continuous glucose monitor data were consistently available (≥70%) in 23% of the participants. For the 64% of participants with paired HbA1cvalues at enrollment and study end, the median HbA1cdecreased from 9.8% to 9.0% ( P < .001). Insulin pump users increased from 31 to 48 and automated insulin delivery users increased from 11 to 38. Conclusions:We established a program to support CGM use in youth with T1D and barriers to consistent CGM supplies, offering lessons for other clinics to address disparities with team-based, algorithm-enabled, remote T1D care. This real-world pilot and feasibility study noted challenges with low levels of protocol adherence and obtaining complete data in this cohort. Future iterations of the program should explore RPM communication methods that better align with this population’s preferences to increase participant engagement. 
    more » « less
    Free, publicly-accessible full text available December 23, 2025
  6. Objective:Develop workflows and billing processes for a Certified Diabetes Care and Education Specialist (CDCES)-led remote patient monitoring (RPM) program to transition the Teamwork, Targets, Technology, and Tight Control (4T) Study to our clinic’s standard of care. Methods:We identified stakeholders within a pediatric endocrinology clinic (hospital compliance, billing specialists, and clinical informatics) to identify, discuss, and approve billing codes and workflow. The group evaluated billing code stipulations, such as the timing of continuous glucose monitor (CGM) interpretation, scope of work, providers’ licensing, and electronic health record (EHR) documentation to meet billing compliance standards. We developed a CDCES workflow for asynchronous CGM interpretation and intervention and initiated an RPM billing pilot. Results:We built a workflow for CGM interpretation (billing code: 95251) with the CDCES as the service provider. The workflow includes data review, patient communications, and documentation. Over the first month of the pilot, RPM billing codes were submitted for 52 patients. The average reimbursement rate was $110.33 for commercial insurance (60% of patients) and $46.95 for public insurance (40% of patients) per code occurrence. Conclusions:Continuous involvement of CDCES and hospital stakeholders was essential to operationalize all relevant aspects of clinical care, workflows, compliance, documentation, and billing. CGM interpretation with RPM billing allows CDCES to work at the top of their licensing credential, increase clinical care touch points, and provide a business case for expansion. As evidence of the clinical benefits of RPM increases, the processes developed here may facilitate broader adoption of revenue-generating CDCES-led care to fund RPM. 
    more » « less
  7. Background:The Glycemia Risk Index (GRI) was developed in adults with diabetes and is a validated metric of quality of glycemia. Little is known about the relationship between GRI and type 1 diabetes (T1D) self-management habits, a validated assessment of youths’ engagement in habits associated with glycemic outcomes. Method:We retrospectively examined the relationship between GRI and T1D self-management habits in youth with T1D who received care from a Midwest pediatric diabetes clinic network. The GRI was calculated using seven days of continuous glucose monitor (CGM) data, and T1D self-management habits were assessed ±seven days from the GRI score. A mixed-effects Poisson regression model was used to evaluate the total number of habits youth engaged in with GRI, glycated hemoglobin A1c (HbA1c), age, race, ethnicity, and insurance type as fixed effects and participant ID as a random effect to account for multiple clinic visits per individual. Results:The cohort included 1182 youth aged 2.5 to 18.0 years (mean = 13.8, SD = 3.5) comprising 50.8% male, 84.6% non-Hispanic White, and 64.8% commercial insurance users across a total of 6029 clinic visits. Glycemia Risk Index scores decreased as total number of habits performed increased, suggesting youth who performed more self-management habits achieved a higher quality of glycemia. Conclusions:In youth using CGMs, GRI may serve as an easily obtainable metric to help identify youth with above target glycemia, and engagement/disengagement in the T1D self-management habits may inform clinicians with suitable interventions for improving glycemic outcomes. 
    more » « less
  8. Background:The glycemia risk index (GRI) is a composite metric developed and used to estimate quality of glycemia in adults with diabetes who use continuous glucose monitor (CGM) devices. In a cohort of youth with type 1 diabetes (T1D), we examined the utility of the GRI for evaluating quality of glycemia between clinic visits by analyzing correlations between the GRI and longitudinal glycated hemoglobin A1c (HbA1c) measures. Method:Using electronic health records and CGM data, we conducted a retrospective cohort study to analyze the relationship between the GRI and longitudinal HbA1c measures in youth (T1D duration ≥1 year; ≥50% CGM wear time) receiving care from a Midwest pediatric diabetes clinic network (March 2016 to May 2022). Furthermore, we analyzed correlations between HbA1c and the GRI high and low components, which reflect time spent with high/very high and low/very low glucose, respectively. Results:In this cohort of 719 youth (aged = 2.5-18.0 years [median = 13.4; interquartile range [IQR] = 5.2]; 50.5% male; 83.7% non-Hispanic White; 68.0% commercial insurance), baseline GRI scores positively correlated with HbA1c measures at baseline and 3, 6, 9, and 12 months later (r = 0.68, 0.65, 0.60, 0.57, and 0.52, respectively). At all time points, strong positive correlations existed between HbA1c and time spent in hyperglycemia. Substantially weaker, negative correlations existed between HbA1c and time spent in hypoglycemia. Conclusions:In youth with T1D, the GRI may be useful for evaluating quality of glycemia between scheduled clinic visits. Additional CGM-derived metrics are needed to quantify risk for hypoglycemia in this population. 
    more » « less
  9. Free, publicly-accessible full text available December 1, 2026
  10. Free, publicly-accessible full text available August 1, 2026