skip to main content


Search for: All records

Award ID contains: 2205103

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bernard, O. ; Clarysse, P. ; Duchateau, N. ; Ohayon, J. ; Viallon, M (Ed.)
    Increased passive myocardial stiffness is implicated in the pathophysiology of many cardiac diseases, and its in vivo estimation can improve management of heart disease. MRI-driven computational constitutive modeling has been used extensively to evaluate passive myocardial stiffness. This approach requires subject-specific data that is best acquired with different MRI sequences: conventional cine (e.g. bSSFP), tagged MRI (or DENSE), and cardiac diffusion tensor imaging. However, due to the lack of comprehensive datasets and the challenge of incorporating multi-phase and single-phase disparate MRI data, no studies have combined in vivo cine bSSFP, tagged MRI, and cardiac diffusion tensor imaging to estimate passive myocardial stiffness. The objective of this work was to develop a personalized in silico left ventricular model to evaluate passive myocardial stiffness by integrating subject-specific geometric data derived from cine bSSFP, regional kinematics extracted from tagged MRI, and myocardial microstructure measured using in vivo cardiac diffusion tensor imaging. To demonstrate the feasibility of using a complete subject-specific imaging dataset for passive myocardial stiffness estimation, we calibrated a bulk stiffness parameter of a transversely isotropic exponential constitutive relation to match the local kinematic field extracted from tagged MRI. This work establishes a pipeline for developing subject-specific biomechanical ventricular models to probe passive myocardial mechanical behavior, using comprehensive cardiac imaging data from multiple in vivo MRI sequences. 
    more » « less
    Free, publicly-accessible full text available June 16, 2024
  2. Bernard, Olivier ; Clarysse, Patrick ; Duchateau, Nicolas ; Ohayon, Jacques ; Viallon, Magalie (Ed.)
    Porcine hearts (N = 14) underwent ex vivo diffusion tensor imaging (DTI) at 3T. DTI analysis showed regional differences in helix angle (HA) range. The HA range in the posterior free wall was significantly greater than that of the anterior free wall (p = 0.02), the lateral free wall (p < 0.001) and the septum (p = 0.008). The best-fit transmural HA function also varied by region, with eight regions best described by an arctan function, seven by an arcsine function, and a single region by a linear function. Tractography analysis was performed, and the length that the tracts spanned within the epicardial, midwall, and endocardial segments was measured. A high number of tracts span the epicardial and mid-wall thirds, with fewer tracts spanning the mid-wall and endocardial thirds. Connectivity analysis of the number of tracts connecting different ventricular regions showed a high prevalence of oblique tracts that may be critical for long-range connectivity. 
    more » « less
    Free, publicly-accessible full text available June 16, 2024