skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2205863

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We have conducted a systematic search around the Milky Way (MW) analog NGC 253 (D= 3.5 Mpc), as a part of the Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS)—a Magellan+Megacam survey to identify dwarfs and other substructures in resolved stellar light around MW-mass galaxies outside of the Local Group. In total, NGC 253 has five satellites identified by PISCeS within 100 kpc with an absoluteV-band magnitude ofMV< −7. We have additionally obtained deep Hubble Space Telescope imaging of four reported candidates beyond the survey footprint: Do III, Do IV, and dw0036m2828 are confirmed to be satellites of NGC 253, while SculptorSR is found to be a background galaxy. We find no convincing evidence for the presence of a plane of satellites surrounding NGC 253. We construct its satellite luminosity function, which is complete down toMV≲ −8 out to 100 kpc andMV≲ −9 out to 300 kpc, and compare it to those calculated for other Local Volume galaxies. Exploring trends in satellite counts and star-forming fractions among satellite systems, we find relationships with host stellar mass, environment, and morphology, pointing to a complex picture of satellite formation, and a successful model has to reproduce all of these trends. 
    more » « less
  2. Abstract We have discovered the stellar counterpart to the ALFALFA Virgo 7 cloud complex, which has been thought to be optically dark and nearly star-free since its discovery in 2007. This ∼190 kpc long chain of enormous atomic gas clouds (MHi∼ 109M) is embedded in the hot intracluster medium of the Virgo galaxy cluster but is isolated from any galaxy. Its faint, blue stellar counterpart, BC6, was identified in a visual search of archival optical and UV imaging. Follow-up observations with the Green Bank Telescope, Hobby–Eberly Telescope, and Hubble Space Telescope demonstrate that this faint counterpart is at the same velocity as the atomic gas, actively forming stars, and metal-rich (12 + (O/H) = 8.58 ± 0.25). We estimate its stellar mass to be only log ( M * / M ) 4.4 , making it one of the most gas-rich stellar systems known. Aside from its extraordinary gas content, the properties of BC6 are entirely consistent with those of a recently identified class of young, low-mass, isolated, and star-forming clouds in Virgo that appear to have formed via extreme ram pressure stripping events. We expand the existing discussion of the origin of this structure and suggest NGC 4522 as a likely candidate; however, the current evidence is not fully consistent with any of our proposed progenitor galaxies. We anticipate that other “dark” gas clouds in Virgo may have similarly faint, star-forming counterparts. We aim to identify these through the help of a citizen science search of the entire cluster. 
    more » « less
  3. Abstract We have imaged the entirety of eight (plus one partial) Milky Way (MW)–like satellite systems, a total of 42 (45) satellites, from the Satellites Around Galactic Analogs II catalog in both Hαand Hiwith the Canada–France–Hawaii Telescope and the Jansky Very Large Array. In these eight systems we have identified four cases where a satellite appears to be currently undergoing ram pressure stripping (RPS) as its Higas collides with the circumgalactic medium (CGM) of its host. We also see a clear suppression of gas fraction (MHI/M*) with decreasing (projected) satellite–host separation—to our knowledge, the first time this has been observed in a sample of MW-like systems. Comparisons to the Auriga, A Project Of Simulating The Local Environment, and TNG50 cosmological zoom-in simulations show consistent global behavior, but they systematically underpredict gas fractions across all satellites by roughly 0.5 dex. Using a simplistic RPS model, we estimate the average peak CGM density that satellites in these systems have encountered to be log ρ cgm / g cm 3 27.3 . Furthermore, we see tentative evidence that these satellites are following a specific star formation rate to gas fraction relation that is distinct from field galaxies. Finally, we detect one new gas-rich satellite in the UGC 903 system with an optical size and surface brightness meeting the standard criteria to be considered an ultra-diffuse galaxy. 
    more » « less
  4. ABSTRACT While dwarf galaxies observed in the field are overwhelmingly star forming, dwarf galaxies in environments as dense or denser than the Milky Way are overwhelmingly quenched. In this paper, we explore quenching in the lower density environment of the Small-Magellanic-Cloud-mass galaxy NGC 3109 (M$$_* \sim 10^8 \, \text{M}_\odot$$), which hosts two known dwarf satellite galaxies (Antlia and Antlia B), both of which are $${\rm H}\, \rm{\small I}$$ deficient compared to similar galaxies in the field and have recently stopped forming stars. Using a new semi-analytic model in concert with the measured star formation histories and gas masses of the two dwarf satellite galaxies, we show that they could not have been quenched solely by direct ram pressure stripping of their interstellar media, as is common in denser environments. Instead, we find that separation of the satellites from pristine gas inflows, coupled with stellar-feedback-driven outflows from the satellites (jointly referred to as the starvation quenching model), can quench the satellites on time-scales consistent with their likely infall times into NGC 3109’s halo. It is currently believed that starvation is caused by ‘weak’ ram pressure that prevents low-density, weakly bound gas from being accreted on to the dwarf satellite, but cannot directly remove the denser interstellar medium. This suggests that star-formation-driven outflows serve two purposes in quenching satellites in low-mass environments: outflows from the host form a low-density circumgalactic medium that cannot directly strip the interstellar media from its satellites, but is sufficient to remove loosely bound gaseous outflows from the dwarf satellites driven by their own star formation. 
    more » « less
  5. Abstract To better understand the formation of large, low-surface-brightness galaxies, we measure the correlation function between ultradiffuse galaxy (UDG) candidates and Milky Way analogs (MWAs). We find that: (1) the projected radial distribution of UDG satellites (projected surface density ∝r−0.84±0.06) is consistent with that of normal satellite galaxies; (2) the number of UDG satellites per MWA (SUDG) is ∼0.5 ± 0.1 over projected radii from 20 to 250 kpc and −17 <Mr< −13.5; (3)SUDGis consistent with a linear extrapolation of the relationship between the number of UDGs per halo versus halo mass obtained over galaxy group and cluster scales; (4) red UDG satellites dominate the population of UDG satellites (∼80%); (5) over the range of satellite magnitudes studied, UDG satellites comprise ∼10% of the satellite galaxy population of MWAs; and (6) a significant fraction of these (∼13%) have estimated total masses >1010.9Mor, equivalently, at least half the halo mass of the LMC, and populate a large fraction (∼18%) of the expected subhalos down to these masses. All of these results suggest a close association between the overall low-mass galaxy population and UDGs, which we interpret as favoring models where UDG formation principally occurs within the general context of low-mass galaxy formation over models invoking more exotic physical processes specifically invoked to form UDGs. 
    more » « less
  6. Abstract We investigate the ultradiffuse galaxy (UDG) UGC 9050-Dw1, which was selected because of its disturbed morphology as part of a larger sample of UDGs that display evidence for significant interactions. We use the Hubble Space Telescope’s Advanced Camera for Surveys to identify globular clusters (GCs) associated with UGC 9050-Dw1, and the Jansky Very Large Array to measure its Hicontent. UGC 9050-Dw1, a neighbor to the low surface brightness spiral UGC 9050, exhibits a unique UV-bright central “clump” with clearly associated Higas and an extended stellar tidal plume to the north. We identify 52 ± 12 GCs, implying a specific frequency ofSN= 122 ± 38, one of the highest reported for a UDG of this luminosity ( log L V / L = 7.5 ± 0.1 ). Additionally, ∼20% of the total light of the galaxy is contributed by GCs. Nearly uniform GC colors suggest they were formed during a single intense episode of star formation. We posit that UGC 9050-Dw1 represents the initial definitive observational example of UDG formation resulting from a dwarf merger event, where subsequent clumpy star formation has contributed to its present observed characteristics. 
    more » « less
  7. ABSTRACT We study the relative fractions of quenched and star-forming satellite galaxies in the Satellites Around Galactic Analogs (SAGA) survey and Exploration of Local VolumE Satellites (ELVES) program, two nearby and complementary samples of Milky Way-like galaxies that take different approaches to identify faint satellite galaxy populations. We cross-check and validate sample cuts and selection criteria, as well as explore the effects of different star-formation definitions when determining the quenched satellite fraction of Milky Way analogues. We find the mean ELVES quenched fraction (〈QF〉), derived using a specific star formation rate (sSFR) threshold, decreases from ∼50 per cent to ∼27 per cent after applying a cut in absolute magnitude to match that of the SAGA survey (〈QF〉SAGA ∼9 per cent). We show these results are consistent for alternative star-formation definitions. Furthermore, these quenched fractions remain virtually unchanged after applying an additional cut in surface brightness. Using a consistently derived sSFR and absolute magnitude limit for both samples, we show that the quenched fraction and the cumulative number of satellites in the ELVES and SAGA samples broadly agree. We briefly explore radial trends in the ELVES and SAGA samples, finding general agreement in the number of star-forming satellites per host as a function of radius. Despite the broad agreement between the ELVES and SAGA samples, some tension remains with these quenched fractions in comparison to the Local Group and simulations of Milky Way analogues. 
    more » « less
  8. Abstract We report the discovery of Pavo, a faint (MV= −10.0), star-forming, irregular, and extremely isolated dwarf galaxy atD≈ 2 Mpc. Pavo was identified in Dark Energy Camera Legacy Survey imaging via a novel approach that combines low surface brightness galaxy search algorithms and machine-learning candidate classifications. Follow-up imaging with the Inamori-Magellan Areal Camera and Spectrograph on the 6.5 m Magellan Baade telescope revealed a color–magnitude diagram (CMD) with an old stellar population, in addition to the young population that dominates the integrated light, and a tip of the red giant branch distance estimate of 1.99 0.22 + 0.20 Mpc. The blue population of stars in the CMD is consistent with the youngest stars having formed no later than 150 Myr ago. We also detected no Hαemission with SOAR telescope imaging, suggesting that we may be witnessing a temporary low in Pavo’s star formation. We estimate the total stellar mass of Pavo to be log M * / M = 5.6 ± 0.2 and measure an upper limit on its Higas mass of 1.0 × 106Mbased on the HIPASS survey. Given these properties, Pavo’s closest analog is Leo P (D= 1.6 Mpc), previously the only known isolated, star-forming, Local Volume dwarf galaxy in this mass range. However, Pavo appears to be even more isolated, with no other known galaxy residing within over 600 kpc. As surveys and search techniques continue to improve, we anticipate an entire population of analogous objects being detected just outside the Local Group. 
    more » « less
  9. Abstract We present results from wide-field imaging of the resolved stellar populations of the dwarf spheroidal galaxies Cassiopeia III (And XXXII) and Perseus I (And XXXIII), two satellites in the outer stellar halo of the Andromeda galaxy (M31). Our WIYN pODI photometry traces the red giant star population in each galaxy to ∼2.5−3 half-light radii from the galaxy center. We use the tip of the red giant branch (TRGB) method to derive distances of (m−M)0= 24.62 ± 0.12 mag (839 45 + 48 kpc, or 156 13 + 16 kpc from M31) for Cas III and 24.47 ± 0.13 mag (738 45 + 48 kpc, or 351 16 + 17 kpc from M31) for Per I. These values are consistent within the errors with TRGB distances derived from a deeper Hubble Space Telescope study of the galaxies’ inner regions. For each galaxy, we derive structural parameters, total magnitude, and central surface brightness. We also place upper limits on the ratio of neutral hydrogen gas mass to optical luminosity, confirming the gas-poor nature of both galaxies. We combine our data set with corresponding data for the M31 satellite galaxy Lacerta I (And XXXI) from earlier work and search for substructure within the RGB star populations of Cas III, Per I, and Lac I. We find an overdense region on the west side of Lac I at a significance level of 2.5σ–3σand a low-significance filament extending in the direction of M31. In Cas III, we identify two modestly significant overdensities near the center of the galaxy and another at two half-light radii. Per I shows no evidence for substructure in its RGB star population, which may reflect this galaxy’s isolated nature. 
    more » « less
  10. Abstract We report results from a systematic wide-area search for faint dwarf galaxies at heliocentric distances from 0.3 to 2 Mpc using the full 6 yr of data from the Dark Energy Survey (DES). Unlike previous searches over the DES data, this search specifically targeted a field population of faint galaxies located beyond the Milky Way virial radius. We derive our detection efficiency for faint, resolved dwarf galaxies in the Local Volume with a set of synthetic galaxies and expect our search to be complete toMV∼ (−7, −10) mag for galaxies atD= (0.3, 2.0) Mpc. We find no new field dwarfs in the DES footprint, but we report the discovery of one high-significance candidate dwarf galaxy at a distance of 2.2 0.12 + 0.05 Mpc , a potential satellite of the Local Volume galaxy NGC 55, separated by 47′ (physical separation as small as 30 kpc). We estimate this dwarf galaxy to have an absoluteV-band magnitude of 8.0 0.3 + 0.5 mag and an azimuthally averaged physical half-light radius of 2.2 0.4 + 0.5 kpc , making this one of the lowest surface brightness galaxies ever found with μ = 32.3 mag arcsec 2 . This is the largest, most diffuse galaxy known at this luminosity, suggesting possible tidal interactions with its host. 
    more » « less