skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2205910

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. Abstract This paper is concerned with two classes of cubic quasilinear equations, which can be derived as asymptotic models from shallow-water approximation to the 2D incompressible Euler equations. One class of the models has homogeneous cubic nonlinearity and includes the integrable modified Camassa–Holm (mCH) equation and Novikov equation, and the other class encompasses both quadratic and cubic nonlinearities. It is demonstrated here that both these models possess localized peaked solutions. By constructing a Lyapunov function, these peaked waves are shown to be dynamically stable under small perturbations in the natural energy space $H^1$, without restriction on the sign of the momentum density. In particular, for the homogeneous cubic nonlinear model, we are able to further incorporate a higher-order conservation law to conclude orbital stability in $$H^1\cap W^{1,4}$$. Our analysis is based on a strong use of the conservation laws, the introduction of certain auxiliary functions, and a refined continuity argument. 
    more » « less