skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2206085

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Motivated by the possibility of noise to cure equations of finite-time blowup, the recent work [ 90] by the second and third named authors showed that with quantifiable high probability, random diffusion restores global existence for a large class of active scalar equations in arbitrary dimension with possibly singular velocity fields. This class includes Hamiltonian flows, such as the SQG equation and its generalizations, and gradient flows, such as the Patlak–Keller–Segel equation. A question left open is the asymptotic behavior of the solutions, in particular, whether they converge to a steady state. We answer this question by showing that the solutions from [ 90] in the periodic setting converge in Gevrey norm exponentially fast to the uniform distribution as time $$t\rightarrow \infty $$. 
    more » « less