skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2206243

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We study the stellar distribution around supermassive black holes in gas-rich nuclear star clusters (NSCs). NSCs could contain vast amounts of gas, which contribute significantly to shaping the stellar distribution, typically altering the stellar density cusp from the usual J. N. Bahcall & R. A. Wolf solution and consequently affecting the dynamics in the NSC. The dense gaseous environment in NSCs gives rise to dynamical phenomena that are otherwise rare in other gas-free environments. Here we extend the derivation introduced in J. N. Bahcall & R. A. Wolf to include an additional energy dissipation term associated with gas drag. We examine the effects of different forms of gas drag on the stellar density distribution. Finally, we discuss implications on the rates of tidal disruption events and other transients triggered by stellar interactions in gas-rich galactic nuclei. 
    more » « less
    Free, publicly-accessible full text available July 16, 2026
  2. Abstract Once per ≈104–105yr, an unlucky star may experience a close encounter with a supermassive black hole (SMBH), partially or fully tearing apart the star in an exceedingly brief, bright interaction called a tidal disruption event (TDE). Remnants of partial TDEs are expected to be plentiful in our Galactic center, where at least six unexplained, diffuse, star-like “G objects” have already been detected, which may have formed via interactions between stars and the SMBH. Using numerical simulations, this work aims to identify the characteristics of TDE remnants. We take 3D hydrodynamic FLASH models of partially disrupted stars and map them into the 1D stellar evolution code MESA to examine the properties of these remnants from tens to billions of years after the TDE. The remnants initially exhibit a brief, highly luminous phase, followed by an extended cooling period as they return to stable hydrogen burning. During the initial stage (≲105yr) their luminosities increase by orders of magnitude, making them intriguing candidates to explain a fraction of the mysterious G objects. Notably, mild TDEs are the most common, and result in the brightest remnants during this initial phase. However, most remnants exist in a long-lived stage where they are only modestly offset in temperature and luminosity compared to main-sequence stars of equivalent mass. Nonetheless, our results indicate remnants will sustain abnormal, metal-enriched envelopes that may be discernible through spectroscopic analysis. Identifying TDE survivors within the Milky Way could further illuminate some of the most gravitationally intense encounters in the Universe. 
    more » « less
    Free, publicly-accessible full text available August 27, 2026
  3. Abstract We present results from an extensive follow-up campaign of the tidal disruption event (TDE) ASASSN-15oi spanningδt ∼ 10–3000 days, offering an unprecedented window into the multiwavelength properties of a TDE during its first ≈8 yr of evolution. ASASSN-15oi is one of the few TDEs with strong detections at X-ray, optical/UV, and radio wavelengths and it also featured two delayed radio flares atδt ∼ 180 days andδt ∼ 1400 days. Our observations atδt > 1400 days reveal an absence of thermal X-rays, a late-time variability in the nonthermal X-ray emission, and sharp declines in the nonthermal X-ray and radio emission atδt ∼ 2800 days and ∼3000 days, respectively. The UV emission shows no significant evolution atδt > 400 days and remains above the pre-TDE level. We show that a cooling envelope model can explain the thermal emission consistently across all epochs. We also find that a scenario involving episodic ejection of material due to stream–stream collisions can possibly explain the first radio flare. Given the peculiar spectral and temporal evolution of the late-time emission, however, constraining the origins of the second radio flare and the nonthermal X-rays remains challenging. Our study underscores the critical role of long-term, multiwavelength follow-up to fully characterize the extended evolutionary phases of a TDE. 
    more » « less
    Free, publicly-accessible full text available April 2, 2026
  4. Abstract We present the discovery of a second radio flare from the tidal disruption event (TDE) AT2020vwl via long-term monitoring radio observations. Late-time radio flares from TDEs are being discovered more commonly, with many TDEs showing radio emission thousands of days after the stellar disruption, but the mechanism that powers these late-time flares is uncertain. Here, we present radio spectral observations of the first and second radio flares observed from the TDE AT2020vwl. Through detailed radio spectral monitoring, we find evidence for two distinct outflow ejection episodes or a period of renewed energy injection into the preexisting outflow. We deduce that the second radio flare is powered by an outflow that is initially slower than the first flare but carries more energy and shows tentative indication of accelerating over time. Through modelling the long-term optical and UV emission from the TDE as arising from an accretion disk, we infer that the second radio outflow launch or energy injection episode occurred approximately at the time of the peak accretion rate. The fast decay of the second flare precludes environmental changes as an explanation, while the velocity of the outflow is at all times too low to be explained by an off-axis relativistic jet. Future observations that search for any link between the accretion disk properties and late-time radio flares from TDEs will aid understanding of what powers the radio outflows in TDEs and confirm if multiple outflow ejections or energy injection episodes are common. 
    more » « less
    Free, publicly-accessible full text available March 4, 2026
  5. Abstract Tidal disruption events (TDEs) are an important way to probe the properties of stellar populations surrounding supermassive black holes. The observed spectra of several TDEs, such as ASASSN-14li, show high nitrogen-to-carbon (N/C) abundance ratios, leading to questions about their progenitors. Disrupting an intermediate- or high-mass star that has undergone CNO processing, increasing the nitrogen in its core, could lead to an enhanced nitrogen TDE. Galactic nuclei present a conducive environment for high-velocity stellar collisions that can lead to high mass loss, stripping the carbon- and hydrogen-rich envelopes of the stars and leaving behind the enhanced nitrogen cores. TDEs of these stripped stars may therefore exhibit even more extreme nitrogen enhancement. Using the smoothed particle hydrodynamics codeStarSmasher, we provide a parameter space study of high-velocity stellar collisions involving intermediate-mass stars, analyzing the composition of the collision products. We conclude that high-velocity stellar collisions can form products that have abundance ratios similar to those observed in the motivating TDEs. Furthermore, we show that stars which have not experienced high CNO processing can yield low-mass collision products that retain even higher N/C abundance ratios. We analytically estimate the mass fallback for a typical TDE of several collision products to demonstrate consistency between our models and TDE observations. Lastly, we discuss how the extended collision products, with high central to average density ratios, can be related to repeated partial TDEs like ASASSN-14ko and G objects in the Galactic center. 
    more » « less
    Free, publicly-accessible full text available February 6, 2026
  6. Abstract Stars grazing supermassive black holes on bound orbits may produce periodic flares over many passages, known as repeating partial tidal disruption events (TDEs). Here, we present 3D hydrodynamic simulations of Sun-like stars over multiple tidal encounters. The star is significantly restructured and becomes less concentrated as a result of mass loss and tidal heating. The vulnerability to mass loss depends sensitively on the stellar density structure, and the strong correlation between the fractional mass loss ΔM/M*and the ratio of the central and average density ρ c / ρ ¯ , which was initially derived in disruption simulations of main-sequence stars, also applies for stars strongly reshaped by tides. Over multiple orbits, the star loses progressively more mass in each encounter and is doomed to a complete disruption. Throughout its lifetime, the star may produce numerous weak flares (depending on the initial impact parameter), followed by a couple of luminous flares whose brightness increases exponentially. Flux-limited surveys are heavily biased toward the brightest flares, which may appear similar to the flare produced by the same star undergoing a full disruption on its first tidal encounter. This places new challenges on constraining the intrinsic TDE rates, which need to take repeating TDEs into account. Other types of stars with different initial density structures (e.g., evolved stars with massive cores) follow distinct evolution tracks, which might explain the diversity of the long-term luminosity evolution seen in recently uncovered repeaters. 
    more » « less
    Free, publicly-accessible full text available January 16, 2026
  7. Abstract We present a detailed analysis of AT 2020nov, a tidal disruption event (TDE) in the center of its host galaxy, located at a redshift ofz= 0.083. AT 2020nov exhibits unique features, including double-peaked Balmer emission lines, a broad UV/optical flare, and a peak log luminosity in the extreme-ultraviolet (EUV) estimated at 45.6 6 0.33 + 0.10 erg s 1 . A late-time X-ray flare was also observed, reaching an absorbed luminosity of 1.67 × 1043erg s−1approximately 300 days after the UV/optical peak. Multiwavelength coverage, spanning optical, UV, X-ray, and mid-infrared (MIR) bands, reveals a complex spectral energy distribution (SED) that includes MIR flaring indicative of dust echoes, suggesting a dust covering fraction consistent with typical TDEs. Spectral modeling indicates the presence of an extended, quiescent disk around the central supermassive black hole with a radius of 5.0 6 0.77 + 0.59 × 1 0 4 R g . The multicomponent SED model, which includes a significant EUV component, suggests that the primary emission from the TDE is reprocessed by this extended disk, producing the observed optical and MIR features. The lack of strong active galactic nuclei signatures in the host galaxy, combined with the quiescent disk structure, highlights AT 2020nov as a rare example of a TDE occurring in a galaxy with a dormant but extended preexisting accretion structure. 
    more » « less
    Free, publicly-accessible full text available April 2, 2026
  8. Abstract Observations of tidal disruption events (TDEs) show signs of nitrogen enrichment reminiscent of other astrophysical sources such as active galactic nuclei and star-forming galaxies. Given that TDEs probe the gas from a single star, it is possible to test whether the observed enrichment is consistent with expectations from the CNO cycle by looking at the observed nitrogen/carbon (N/C) abundance ratios. Given that ≈20% of solar-mass stars (and an even larger fraction of more massive stars) live in close binaries, it is worthwhile to also consider what TDEs from stars influenced by binary evolution would look like. We show here that TDEs from stars stripped of their hydrogen-rich (and nitrogen-poor) envelopes through previous binary-induced mass loss can produce much higher observable N/C enhancements than even TDEs from massive stars. Additionally, we predict that the time dependence of the N/C abundance ratio in the mass fallback rate of stripped stars will follow the inverse behavior of main-sequence stars, enabling a more accurate characterization of the disrupted star. 
    more » « less
  9. Abstract We present detailed radio observations of the tidal disruption event (TDE) ASASSN-19bt/AT 2019ahk, obtained with the Australia Telescope Compact Array, the Atacama Large Millimeter/submillimeter Array, and the MeerKAT radio telescopes, spanning 40–1464 days after the onset of the optical flare. We find that ASASSN-19bt displays unusual radio evolution compared to other TDEs, as the peak brightness of its radio emission increases rapidly until 457 days post-optical discovery and then plateaus. Using a generalized approach to standard equipartition techniques, we estimate the energy and corresponding physical parameters for two possible emission geometries: a nonrelativistic spherical outflow and a relativistic outflow observed from a range of viewing angles. We find that the nonrelativistic solution implies a continuous energy rise in the outflow fromE∼ 1046toE∼ 1049erg with outflow speedβ≈ 0.05, while the off-axis relativistic jet solution instead suggestsE≈ 1052erg with Lorentz factor Γ ∼ 10 at late times in the maximally off-axis case. We find that neither model provides a holistic explanation for the origin and evolution of the radio emission, emphasizing the need for more complex models. ASASSN-19bt joins the population of TDEs that display unusual radio emission at late times. Conducting long-term radio observations of these TDEs, especially during the later phases, will be crucial for understanding how these types of radio emission in TDEs are produced. 
    more » « less
  10. Abstract Dynamical perturbations from supermassive black hole (SMBH) binaries can increase the rates of tidal disruption events (TDEs). However, most previous work focuses on TDEs from the heavier black hole in the SMBH binary (SMBHB) system. In this work, we focus on the lighter black holes in SMBHB systems and show that they can experience a similarly dramatic increase in their TDE rate due to perturbations from a more massive companion. While the increase in TDEs around the more massive black hole is mostly due to chaotic orbital perturbations, we find that, around the smaller black hole, the eccentric Kozai–Lidov mechanism is dominant and capable of producing a comparably large number of TDEs. In this scenario, the mass derived from the light curve and spectra of TDEs caused by the lighter SMBH companion is expected to be significantly smaller than the SMBH mass estimated from galaxy scaling relations, which are dominated by the more massive companion. This apparent inconsistency can help find SMBHB candidates that are not currently accreting as active galactic nuclei and that are at separations too small for them to be resolved as two distinct sources. In the most extreme cases, these TDEs provide us with the exciting opportunity to study SMBHBs in galaxies where the primary SMBH is too massive to disrupt Sun-like stars. 
    more » « less