skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2206473

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report the detection of near- and mid-infrared emission from polycyclic aromatic hydrocarbons (PAHs) out to ∼35 kpc in the Makani Galaxy, a compact massive galaxy with a record-breaking 100 kpc scale starburst-driven wind at redshiftz= 0.459. The NIRCam and MIRI observations with JWST take advantage of a coincidental match between the PAH spectral features at 3.3, 7.7, and (11.3 + 12.2)μm in Makani and the bandpasses of the MIRI and NIRCam filters. The warm dust is not only detected in the cool-gas tracers of the galactic wind associated with the more recent (7 Myr) starburst episode, but also in the outer warm ionized gas wind produced by the older (0.4 Gyr) episode. The presence of PAHs in the outer wind indicates that the PAHs have survived the long (R/v∼ 108yr) journey to the halo despite the harsh environment of the galactic wind. The measured F1800W/F1130W flux ratios in the unresolved nucleus, inner halo (R= 10–20 kpc), and outer halo (R= 20–35 kpc), tracers of the PAH (11.3 + 12.2)/7.7 ratios, indicate decreasing starlight intensity incident on the PAHs, decreasing PAH sizes, and increasing PAH ionization fractions with increasing distance from the nucleus. These data provide the strongest evidence to date that the ejected dust of galactic winds survives the long journey to the circumgalactic medium, but is eroded along the way. 
    more » « less
    Free, publicly-accessible full text available August 25, 2026
  2. Abstract The cluster environment has been shown to affect the molecular gas content of cluster members, yet a complete understanding of this often subtle effect has been hindered due to a lack of detections over the full parameter space of galaxy star formation rates (SFRs) and stellar masses. Here, we stack CO(2–1) spectra ofz ∼ 1.6 cluster galaxies to explore the average molecular gas fractions of galaxies both at lower mass (log(M*/M) ∼ 9.6) and further below the star-forming main sequence (SFMS; ΔMS ∼ −0.9) than other literature studies; this translates to a 3σgas mass limit of  ∼7 × 109Mfor stacked galaxies below the SFMS. We divide our sample of 54z ∼ 1.6 cluster galaxies, derived from the Spitzer Adaptation of the Red-Sequence Cluster Survey, into nine groupings, for which we recover detections in 8. The average gas content of the full cluster galaxy population is similar to coeval field galaxies matched in stellar mass and SFR. However, when further split by CO-undetected and CO-detected, we find that galaxies below the SFMS have statistically different gas fractions from the field scaling relations, spanning deficiencies to enhancements from 2σbelow to 3σabove the expected field gas fractions, respectively. These differences betweenz= 1.6 cluster and field galaxies below the SFMS are likely due to environmental processes, though further investigation of spatially resolved properties and more robust field scaling relation calibration in this parameter space are required. 
    more » « less
    Free, publicly-accessible full text available May 23, 2026
  3. Abstract The Ovi1032, 1038 Å line is a key probe of cooling gas in the circumgalactic medium (CGM) of galaxies but has been observed to date primarily in absorption along single sight lines. We present deep Hubble Space Telescope (HST) Solar Blind Channel of the Advanced Camera for Surveys observations of the compact, massive starburst Makani. Makani hosts a 100 kpc, [Oii]-emitting galactic wind driven by two episodes of star formation over 400 Myr. We detect Oviand Lyαemission across the [Oii] nebula with similar morphology and extent, out tor≈ 50 kpc. Using differential narrowband imaging, we separate Lyαand Oviand show that the Oviemission is comparable in brightness to [Oii], withLO VI= 4 × 1042erg s−1. The similar hourglass morphology and size of [Oii] and Oviimplicate radiative cooling atT= 105.5K in a hot–cold interface. This may occur as theT> 107K CGM—or the hot fluid driving the wind—exchanges mass with theT≈ 104K clouds entrained in (or formed by) the wind. The optical/UV line ratios may be consistent with shock ionization, although uncertain attenuation and Lyαradiative transfer complicate the interpretation. The detection of Oviin Makani lies at the bleeding edge of the UV imaging capabilities of HST and provides a benchmark for future emission-line imaging of the CGM with a wide-area UV telescope. 
    more » « less
    Free, publicly-accessible full text available June 9, 2026
  4. ABSTRACT High-redshift ($$z\sim 1$$) galaxy clusters are the domain where environmental quenching mechanisms are expected to emerge as important factors in the evolution of the quiescent galaxy population. Uncovering these initially subtle effects requires exploring multiple dependencies of quenching across the cluster environment, and through time. We analyse the stellar mass functions (SMFs) of 17 galaxy clusters within the GOGREEN and GCLASS surveys in the range $0.8< z<1.5$, and with $$\log {(M/{\rm {M_\odot }})}>9.5$$. The data are fit simultaneously with a Bayesian model that allows the Schechter function parameters of the quiescent and star-forming populations to vary smoothly with cluster-centric radius and redshift. The model also fits the radial galaxy number density profile of each population, allowing the global quenched fraction to be parametrized as a function of redshift and cluster velocity dispersion. We find the star-forming SMF to not depend on radius or redshift. For the quiescent population however, there is $$\sim 2\sigma$$ evidence for a radial dependence. Outside the cluster core ($$R>0.3\, R_{\rm 200}$$), the quenched fraction above $$\log {(M/{\rm {M_\odot }})}=9.5$$ is $$\sim 40{\rm\,\,per\, cent}$$, and the quiescent SMF is similar in shape to the star-forming field. In contrast, the cluster core has an elevated quenched fraction ($$\sim 70{\rm \,\,per\, cent}$$), and a quiescent SMF similar in shape to the quiescent field population. We explore contributions of ‘early mass-quenching’ and mass-independent ‘environmental-quenching’ models in each of these radial regimes. The core is well described primarily by early mass-quenching, which we interpret as accelerated quenching of massive galaxies in protoclusters, possibly through merger-driven feedback mechanisms. The non-core is better described through mass-independent environmental-quenching of the infalling field population. 
    more » « less
  5. ABSTRACT Understanding the processes that transform star-forming galaxies into quiescent ones is key to unravelling the role of environment in galaxy evolution. We present measurements of the luminosity functions (LFs) and stellar mass functions (SMFs) of passive red-sequence galaxies in four galaxy clusters at $0.8 < z < 1.3$, selected using deep Very Large Telescope (VLT) observations complemented with data from the Gemini CLuster Astrophysics Spectroscopic (GCLASS) and Gemini Observations of Galaxies in Rich Early ENvironments (GOGREEN) surveys. We find a significant enhancement in the abundance of faint/low-mass passive galaxies in both the LFs and SMFs of all four clusters compared to the field. This is further evidenced by a shallower low-mass slope in the composite passive cluster SMF, which yields a Schechter parameter $$\alpha = -0.54^{+\, 0.03}_{-0.03}$$, compared to $$\alpha = 0.12^{+\, 0.01}_{-0.01}$$ for the field. Our findings indicate that quenching processes that act in clusters are enhanced compared to the field, suggesting that environmental quenching mechanisms may already be active by $$z\sim 1$$. To reproduce the observed passive cluster SMF, we estimate that $$25\pm 5~{{\ \rm per\ cent}}$$ of the star-forming field population that falls into the cluster must have been quenched. Our results largely support traditional quenching models but highlight the need for deeper studies of larger cluster samples to better understand the role of environmental quenching in the distant Universe. 
    more » « less
  6. Abstract The changes in colors across a galaxy are intimately connected to the galaxy’s formation, growth, quenching history, and dust content. A particularly important epoch in the growth of galaxies is nearz∼ 2, often referred to as “cosmic noon,” where galaxies on average reach the peak of their star formation. We study a population of 125 cluster galaxies atz∼ 1.6 in three Hubble Space Telescope filters, F475W, F625W, and F160W, roughly corresponding to the rest-frame far-ultraviolet, near-ultraviolet, andrband, respectively. By comparing to a control sample of 200 field galaxies at similar redshift, we reveal clear, statistically significant differences in the overall spatially resolved colors and color gradients in galaxies across these two different environments. On average, cluster galaxies have redder ultraviolet colors in both the inner and outer regions bounded byr50, as well as an overall wider dispersion of outside-in color gradients. The presence of these observed differences, along with evidence from ancillary data from previous studies, strongly suggests that the environment drives these population-level color differences, by affecting the stellar populations and/or dust content. 
    more » « less
  7. Abstract High-velocity outflows are ubiquitous in compact, massive (M*∼ 1011M),z∼ 0.5 galaxies with extreme star formation surface densities (ΣSFR∼ 2000Myr−1kpc−2). We have previously detected and characterized these outflows using Mgiiabsorption lines. To probe their full extent, we present Keck/KCWI integral field spectroscopy of the [Oii] and Mgiiemission nebulae surrounding all of the 12 galaxies in this study. We find that [Oii] is more effective than Mgiiin tracing low surface brightness, extended emission in these galaxies. The [Oii] nebulae are spatially extended beyond the stars, with radial extentR90between 10 and 40 kpc. The nebulae exhibit nongravitational motions, indicating galactic outflows with maximum blueshifted velocities ranging from −335 to −1920 km s−1. The outflow kinematics correlate with the bursty star formation histories of these galaxies. Galaxies with the most recent bursts of star formation (within the last <3 Myr) exhibit the highest central velocity dispersions (σ≳ 400 km s−1), while the oldest bursts have the lowest-velocity outflows. Many galaxies exhibit both high-velocity cores and more extended, slower-moving gas indicative of multiple outflow episodes. The slower, larger outflows occurred earlier and have decelerated as they propagate into the circumgalactic medium and mix on timescales ≳50 Myr. 
    more » « less
  8. Abstract Many quiescent galaxies discovered in the early Universe by JWST raise fundamental questions on when and how these galaxies became and stayed quenched. Making use of the latest version of the semianalytic model GAEA that provides good agreement with the observed quenched fractions up toz∼ 3, we make predictions for the expected fractions of quiescent galaxies up toz∼ 7 and analyze the main quenching mechanism. We find that in a simulated box of 685 Mpc on a side, the first quenched massive (M∼ 1011M), Milky Way–mass, and low-mass (M∼ 109.5M) galaxies appear atz∼ 4.5,z∼ 6.2, and beforez= 7, respectively. Most quenched galaxies identified at early redshifts remain quenched for more than 1 Gyr. Independently of galaxy stellar mass, the dominant quenching mechanism at high redshift is accretion disk feedback (quasar winds) from a central massive black hole, which is triggered by mergers in massive and Milky Way–mass galaxies and by disk instabilities in low-mass galaxies. Environmental stripping becomes increasingly more important at lower redshift. 
    more » « less
  9. ABSTRACT We have identified 189 candidate z > 1.3 protoclusters and clusters in the LSST Deep Drilling Fields. This sample will enable the measurement of the metal enrichment and star formation history of clusters during their early assembly period through the direct measurement of the rate of supernovae identified through the LSST. The protocluster sample was selected from galaxy overdensities in a Spitzer/IRAC colour-selected sample using criteria that were optimized for protocluster purity using a realistic light-cone. Our tests reveal that $$60\!-\!80~{{\ \rm per\ cent}}$$ of the identified candidates are likely to be genuine protoclusters or clusters, which is corroborated by a ∼4σ stacked X-ray signal from these structures. We provide photometric redshift estimates for 47 candidates which exhibit strong peaks in the photo-z distribution of their candidate members. However, the lack of a photo-z peak does not mean a candidate is not genuine, since we find a stacked X-ray signal of similar significance from both the candidates that exhibit photo-z peaks and those that do not. Tests on the light-cone reveal that our pursuit of a pure sample of protoclusters results in that sample being highly incomplete ($$\sim 4~{{\ \rm per\ cent}}$$) and heavily biased towards larger, richer, more massive, and more centrally concentrated protoclusters than the total protocluster population. Most ($$\sim 75~{{\ \rm per\ cent}}$$) of the selected protoclusters are likely to have a maximum collapsed halo mass of between 1013 and 1014 M⊙, with only $$\sim 25~{{\ \rm per\ cent}}$$ likely to be collapsed clusters above 1014 M⊙. However, the aforementioned bias ensures our sample is $$\sim 50~{{\ \rm per\ cent}}$$ complete for structures that have already collapsed into clusters more massive than 1014 M⊙. 
    more » « less
  10. ABSTRACT We present an analysis of the galaxy stellar mass function (SMF) of 14 known protoclusters between 2.0 < z < 2.5 in the COSMOS field, down to a mass limit of 109.5 M⊙. We use existing photometric redshifts with a statistical background subtraction, and consider star-forming and quiescent galaxies identified from (NUV − r) and (r − J) colours separately. Our fiducial sample includes galaxies within 1 Mpc of the cluster centres. The shape of the protocluster SMF of star-forming galaxies is indistinguishable from that of the general field at this redshift. Quiescent galaxies, however, show a flatter SMF than in the field, with an upturn at low mass, though this is only significant at ∼2σ. There is no strong evidence for a dominant population of quiescent galaxies at any mass, with a fraction <15 per cent at 1σ confidence for galaxies with log M*/M⊙ < 10.5. We compare our results with a sample of galaxy groups at 1 < z < 1.5, and demonstrate that a significant amount of environmental quenching must take place between these epochs, increasing the relative abundance of high-mass ($$\rm M_{\ast } \gt 10^{10.5} {\rm M}_{\odot }$$) quiescent galaxies by a factor ≳ 2. However, we find that at lower masses ($$\rm M_{\ast } \lt 10^{10.5} {\rm M}_{\odot }$$), no additional environmental quenching is required. 
    more » « less