- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Steinbrunner, P. (2)
-
Bayer, V_C (1)
-
Card, A. (1)
-
Danielson, J_R (1)
-
Deller, A. (1)
-
Dubin, D.H.E. (1)
-
O'Neil, T.M. (1)
-
Stenson, E_V (1)
-
Stoneking, M.R. (1)
-
Stoneking, M_R (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Observations of persistent toroidal modes in dipole-trapped pure electron plasmas are presented. Non-neutral electron plasmas were confined by the poloidal magnetic field of the APEX (A Positron Electron eXperiment) levitating dipole trap. The negative bias of the electron emitter was gated to control the filling time. Large amplitude, narrow-band oscillations were consistently observed in wall probe measurements after the fill. The oscillatory image-charge currents induced by the trapped electron plasma typically persisted for many seconds with fundamental frequencies,f0 = 50 to 500 kHz, that scale with the drift velocity. We attribute this feature to the dipole-equivalent of the diocotron mode that is commonly observed in non-neutral plasmas in linear traps.more » « less
-
Steinbrunner, P.; O'Neil, T.M.; Stoneking, M.R.; Dubin, D.H.E. (, Journal of Plasma Physics)This paper discusses thermal equilibrium states of single-species plasmas, such as pure electron plasmas and pure positron plasmas, that are confined in a dipole trap. Thermal equilibrium states for such plasmas are routinely realized in the homogeneous magnetic field of Penning–Malmberg traps. We generalize the theory of these states to include inhomogeneous magnetic dipole fields. The approach to thermal equilibrium takes place in two stages with well separated time scales. On the collision time scale, thermal equilibrium is established along each magnetic field line. On the much longer transport time scale, heat conduction and viscosity bring the plasmas on different flux contours into thermal equilibrium, we call this a state of global thermal equilibrium. We present numerical results for local and global thermal equilibria. These results agree with the analytic predictions for charge collections that are large compared with the Debye length. There is, in principle, no limit to the confinement time of a single-species plasma in a global thermal equilibrium state. Experiments with hot electron–ion plasmas performed in the LDX and RT1 devices give us confidence that, in contrast to a Penning–Malmberg trap, a magnetic dipole field can also confine cold quasi-neutral electron–positron pair plasmas on the time scale of the phenomena of interest. Such pair plasmas are assumed to form in the magnetosphere of neutron stars but have so far not been realized in a laboratory. The creation of an electron–positron pair plasma is the main goal of the APEX collaboration.more » « less