Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We report the small-scale spatial variation in cool (T ∼ 104K) Mgiiabsorption detected in the circumgalactic medium (CGM) of a star-forming galaxy atz ≈ 0.8. The CGM of this galaxy is probed by a spatially extended bright background gravitationally lensed arc atz= 2.76. The background arc continuously samples the CGM of the foreground galaxy at a range of impact parameters between 54 and 66 kpc. The Mgiiabsorption strengths vary by more than a factor of 2 within these ranges. A power-law fit to the fractional variation of absorption strengths yields a coherence length of 5.8 kpc within this range of impact parameters. This suggests a high degree of spatial coherence in the CGM of this galaxy. The host galaxy is driving a strong galactic outflow with a mean outflow velocity ≈ −179 km s−1and mass outflow rate M⊙yr−1traced by blueshifted Mgiiand Feiiabsorption lines. The galaxy itself has a spatially extended emission halo with a maximum spatial extent of ≈33 kpc traced by [Oii], [Oiii], and Hβemission lines. The extended emission halo shows kinematic signatures of corotating halo gas with solar metallicity. Taken together, these observations suggest evidence of a baryon cycle that is recycling the outflowing gas to form the next generation of stars.more » « lessFree, publicly-accessible full text available June 17, 2026
- 
            ABSTRACT We present the spatially resolved measurements of a cool galactic outflow in the gravitationally lensed galaxy RCS0327 at z ≈ 1.703 using VLT/MUSE IFU observations. We probe the cool outflowing gas, traced by blueshifted Mg ii and Fe ii absorption lines, in 15 distinct regions of the same galaxy in its image-plane. Different physical regions, 5 – 7 kpc apart within the galaxy, drive the outflows at different velocities (Vout ∼ −161 to −240 km s−1), and mass outflow rates ($$\dot{M}_{out} \sim 183$$ – 527 $${\rm M}_{\odot }\, \mathrm{yr}^{-1}$$). The outflow velocities from different regions of the same galaxy vary by 80 km s−1, which is comparable to the variation seen in a large sample of star-burst galaxies in the local universe. Using multiply lensed images of RCS0327, we probe the same star-forming region at different spatial scales (0.5–25 kpc2), we find that outflow velocities vary between ∼ −120 and −242 km s−1, and the mass outflow rates vary between ∼37 and 254 $${\rm M}_{\odot }\, \mathrm{yr}^{-1}$$. The outflow momentum flux in this galaxy is ≥ 100% of the momentum flux provided by star formation in individual regions, and outflow energy flux is ≈ 10% of the total energy flux provided by star formation. These estimates suggest that the outflow in RCS0327 is energy driven. This work shows the importance of small scale variations of outflow properties due to the variations of local stellar properties of the host galaxy in the context of galaxy evolution.more » « less
- 
            We report the discovery of 11 high-velocity H I clouds at Galactic latitudes of 25°–30°, likely embedded in the Milky Way’s nuclear wind. The clouds are detected with deep Green Bank Telescope 21 cm observations of a 3.2° × 6.2° field around QSO 1H1613-097, located behind the northern Fermi Bubble. Our measurements reach 3sigma limits on NHI as low as 3.1 × 10^17/cm^2, more than twice as sensitive as previous HI studies of the bubbles. The clouds span −180 ≤v_LSR≤ −90 km/s and are the highest-latitude 21 cm high-velocity cloud detected inside the bubbles. Eight clouds are spatially resolved, showing coherent structures with sizes of 4–28 pc, peak column densities of log HI = 17.9–18.7, and HI masses up to 1470M⊙. Several exhibit internal velocity gradients. Their presence at such high latitudes is surprising, given the short expected survival times for clouds expelled from the Galactic center. These objects may be fragments of a larger cloud disrupted by interaction with the surrounding hot gas.more » « lessFree, publicly-accessible full text available July 7, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
