- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bigalke, Siiri (1)
-
Kalashnikov, Dmitri A. (1)
-
Loikith, Paul (1)
-
Loikith, Paul C. (1)
-
Siler, Nicholas (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Great Salt Lake reached the lowest water volume in its entire 170+ year record in 2022. To explain this record low we develop and apply a lake mass‐balance model and perform four simulations: one where all input and output variables are fixed to their mid‐20th century average resulting in an equilibrium lake volume, and three others where one of the input variables (precipitation or streamflow) or the output variable (evaporation) follows observations while the other two are fixed to their mid‐20th century average. Results show anomalously low streamflow accounting for the largest proportion of the lake volume departure from the equilibrium state by 2022, resulting in about three times the additional water loss over 1950–2022 as increasing evaporation, which played the second largest role. Precipitation changes played a minimal role. Though streamflow had a greater effect, the lake would not have reached the record low volume without increasing evaporation.more » « less
-
Loikith, Paul C.; Kalashnikov, Dmitri A. (, Monthly Weather Review)Abstract During the last week of June 2021, the Pacific Northwest region of North America experienced a record-breaking heatwave of historic proportions. All-time high temperature records were shattered, often by several degrees, across many locations, with Canada setting a new national record, the state of Washington setting a new record, and the state of Oregon tying its previous record. Here we diagnose key meteorology that contributed to this heatwave. The event was associated with a highly anomalous midtropospheric ridge, with peak 500-hPa geopotential height anomalies centered over central British Columbia. This ridge developed over several days as part of a large-scale wave train. Back trajectory analysis indicates that synoptic-scale subsidence and associated adiabatic warming played a key role in enhancing the magnitude of the heat to the south of the ridge peak, while diabatic heating was dominant closer to the ridge center. Easterly/offshore flow inhibited marine cooling and contributed additional downslope warming along the western portions of the region. A notable surface thermally induced trough was evident throughout the event over western Oregon and Washington. An eastward shift of the thermal trough, following the eastward migration of the 500-hPa ridge, allowed an inland surge of cooler marine air and dramatic 24-h cooling, especially along the western periphery of the region. Large-scale horizontal warm-air advection played a minimal role. When compared with past highly amplified ridges over the region, this event was characterized by much higher 500-hPa geopotential heights, a stronger thermal trough, and stronger offshore flow.more » « less
An official website of the United States government
