skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2207026

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We explored the settling dynamics of vertically aligned particles in a quiescent, stratified two-layer fluid using particle tracking velocimetry. Glass spheres of$$d=4\,{\rm mm}$$diameter were released at frequencies of 4, 6 and 8 Hz near the free surface, traversing through an upper ethanol layer ($$H_1$$), whereHis height or layer thickess, varying from$$10d$$to$$40d$$and a lower oil layer. Results reveal pronounced lateral particle motion in the ethanol layer, attributed to a higher Galileo number ($$Ga = 976$$, ratio of buoyancy–gravity to viscous effects), compared with the less active behaviour in the oil layer ($$Ga = 16$$). The ensemble vertical velocity of particles exhibited a minimum just past the density interface, becoming more pronounced with increasing$$H_1$$, and suggesting that enhanced entrainment from ethanol to oil resulted in an additional buoyancy force. This produced distinct patterns of particle acceleration near the density interface, which were marked by significant deceleration, indicating substantial resistance to particle motion. An increased drag coefficient occurred for$$H_1/d = 40$$compared with a single particle settling in oil; drag reduced as the particle-release frequency ($$\,f_p$$) increased, likely due to enhanced particle interactions at closer proximity. Particle pair dispersions, lateral ($$R^2_L$$) and vertical ($$R^2_z$$), were modulated by$$H_1$$, initial separation$$r_0$$and$$f_p$$. The$$R^2_L$$dispersion displayed ballistic scaling initially, Taylor scaling for$$r_0 < H_1$$and Richardson scaling for$$r_0 > H_1$$. In contrast,$$R^2_z$$followed a$$R^2_z \sim t^{5.5}$$scaling under$$r_0 < H_1$$. Both$$R^2_L$$and$$R^2_z$$plateaued at a distance from the interface, depending on$$H_1$$and$$f_p$$. 
    more » « less