skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2207641

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While industrial-grade Yb-based amplifiers have become very prevalent, their limited gain bandwidth has created a large demand for robust spectral broadening techniques that allow for few-cycle pulse compression. In this work, we perform a comparative study between several atomic and molecular gases as media for spectral broadening in a hollow-core fiber geometry. Exploiting nonlinearities such as self-phase modulation, self-steepening, and stimulated Raman scattering, we explore the extent of spectral broadening and its dependence on gas pressure, the critical power for self-focusing, and the optimal regime for few-cycle pulse compression. Using a 3-mJ, 200-fs input laser pulses, we achieve 17 fs, few-cycle pulses with 80% fiber energy transmission efficiency. The optimal parameters can be scaled for higher or lower input pulse energies with appropriate gas parameters and fiber geometry. 
    more » « less
  2. Abstract Metrology of electron wavepackets is often conducted with the technique of photoelectron interferometry. However, the ultrashort light pulses employed in this method place a limit on the energy resolution. Here, weadvance ultrafast photoelectron interferometry access both high temporal and spectral resolution. The key to our approach lies in stimulating Raman interferences with a probe pulse and while monitoring the modification of the autoionizing electron yield in a separate delayed detection step. As a proof of the principle, we demonstrated this technique to obtain the components of an autoionizing nf′ wavepacket between the spin-orbit split ionization thresholds in argon. We extracted the amplitudes and phases from the interferogram and compared the experimental results with second-order perturbation theory calculations. This high resolution probing and metrology of electron dynamics opens the path for study of molecular wavepackets. 
    more » « less