A symmetry of a state
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract is a unitary operator of which is an eigenvector. When is an unknown state supplied by a black-box oracle, the state’s symmetries provide key physical insight into the quantum system; symmetries also boost many crucial quantum learning techniques. In this paper, we develop a variational hybrid quantum–classical learning scheme to systematically probe for symmetries of with noa priori assumptions about the state. This procedure can be used to learn various symmetries at the same time. In order to avoid re-learning already known symmetries, we introduce an interactive protocol with a classical deep neural net. The classical net thereby regularizes against repetitive findings and allows our algorithm to terminate empirically with all possible symmetries found. An iteration of the learning algorithm can be implemented efficiently with non-local SWAP gates; we also give a less efficient algorithm with only local operations, which may be more appropriate for current noisy quantum devices. We simulate our algorithm on representative families of states, including cluster states and ground states of Rydberg and Ising Hamiltonians. We also find that the numerical query complexity scales well for up to moderate system sizes.Free, publicly-accessible full text available July 18, 2025 -
Abstract In recent years, there has been considerable focus on exploring driven-dissipative quantum systems, as they exhibit distinctive dissipation-stabilized phases. Among them
dissipative time crystal is a unique phase emerging as a shift from disorder or stationary states to periodic behaviors. However, understanding the resilience of these non-equilibrium phases against quantum fluctuations remains unclear. This study addresses this query within a canonical parametric quantum optical system, specifically, a multi-mode cavity with self- and cross-Kerr non-linearity. Using mean-field (MF) theory we obtain the phase diagram and delimit the parameter ranges that stabilize a non-stationary limit-cycle phase. Leveraging the Keldysh formalism, we study the unique spectral features of each phase. Further, we extend our analyses beyond the MF theory by explicitly accounting for higher-order correlations through cumulant expansions. Our findings unveil insights into the modifications of the open quantum systems phases, underscoring the significance of quantum correlations in non-equilibrium steady states. Importantly, our results conclusively demonstrate the resilience of the non-stationary phase against quantum fluctuations, rendering it a dissipation-induced genuine quantum synchronous phase. -
Chirality, or handedness, is a geometrical property denoting a lack of mirror symmetry. Chirality is ubiquitous in nature and is associated with the nonreciprocal interactions observed in complex systems ranging from biomolecules to topological materials. Here, we demonstrate that chiral arrangements of dipole-coupled atoms or molecules can facilitate the helicity-dependent superradiant emission of light. We show that the collective modes of these systems experience an emergent spin-orbit coupling that leads to chirality-dependent photon transport and nontrivial topological properties. These phenomena are fully described within the electric dipole approximation, resulting in very strong optical responses. Our results demonstrate an intimate connection between chirality, superradiance, and photon helicity and provide a comprehensive framework for studying electron transport dynamics in chiral molecules using cold atom quantum simulators.
Published by the American Physical Society 2024 Free, publicly-accessible full text available May 1, 2025 -
Recent advances in generating well controlled dense arrangements of individual atoms in free space have generated interest in understanding how the extended nature of these systems influences superradiance phenomena. Here, we provide an in-depth analysis on how space-dependent light shifts and decay rates induced by dipole-dipole interactions modify the steady-state properties of coherently driven arrays of quantum emitters. We characterize the steady-state phase diagram, with particular focus on the radiative properties in the steady state. Interestingly, we find that diverging from the well-established Dicke paradigm of equal all-to-all interactions significantly modifies the emission properties. In particular, the prominent quadratic scaling of the radiated light intensity with particle number in the steady state—a hallmark of steady-state Dicke superradiance—is entirely suppressed, resulting in only linear scaling with particle number. We show that this breakdown of steady-state superradiance occurs due to the emergence of additional dissipation channels that populate not only superradiant states but also subradiant ones. The additional contribution of subradiant dark states in the dynamics leads to a divergence in the time scales needed to achieve steady states. Building on this, we further show that measurements taken at finite times for extended atom ensembles reveal properties closely mirroring the idealized Dicke scenario.
Published by the American Physical Society 2024 Free, publicly-accessible full text available May 1, 2025 -
Metasurfaces have recently risen to prominence in optical research, providing unique functionalities that can be used for imaging, beam forming, holography, polarimetry, and many more, while keeping device dimensions small. Despite the fact that a vast range of basic metasurface designs has already been thoroughly studied in the literature, the number of metasurfacerelated papers is still growing at a rapid pace, as metasurface research is now spreading to adjacent fields, including computational imaging, augmented and virtual reality, automotive, display, biosensing, nonlinear, quantum and topological optics, optical computing, and more. At the same time, the ability of metasurfaces to perform optical functions in much more compact optical systems has triggered strong and constantly growing interest from various industries that greatly benefit from the availability of miniaturized, highly functional, and efficient optical components that can be integrated in optoelectronic systems at low cost. This creates a truly unique opportunity for the field of metasurfaces to make both a scientific and an industrial impact. The goal of this Roadmap is to mark this “golden age” of metasurface research and define future directions to encourage scientists and engineers to drive research and development in the field of metasurfaces toward both scientific excellence and broad industrial adoption.more » « lessFree, publicly-accessible full text available March 20, 2025
-
Free, publicly-accessible full text available January 1, 2025
-
Recent experiments of chemical reactions in optical cavities have shown great promise to alter and steer chemical reactions, but still remain poorly understood theoretically. In particular, the origin of resonant effects between the cavity and certain vibrational modes in the collective limit is still subject to active research. In this paper, we study the unimolecular dissociation reactions of many molecules, collectively interacting with an infrared cavity mode, through their vibrational dipole moment. We find that the reaction rate can slow down by increasing the number of aligned molecules, if the cavity mode is resonant with a vibrational mode of the molecules. We also discover a simple scaling relation that scales with the collective Rabi splitting, to estimate the onset of reaction rate modification by collective vibrational strong coupling and numerically demonstrate these effects for up to 10 4 molecules.more » « less