skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2209052

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study investigates how entrainment’s diluting effect on cumulonimbus updraft buoyancy is affected by the temperature of the troposphere, which is expected to increase by the end of the century. A parcel model framework is constructed that allows for independent variations in the temperature (T), the entrainment rateε, the free-tropospheric relative humidity (RH), and the convective available potential energy (CAPE). Using this framework, dilution of buoyancy is evaluated withTand RH independently varied and with CAPE either held constant or increased with temperature. When CAPE is held constant, buoyancy decreases asTincreases, with parcels in warmer environments realizing substantially smaller fractions of their CAPE as kinetic energy (KE). This occurs because the increased moisture difference between an updraft and its surroundings at warmer temperatures drives greater updraft dilution. Similar results are found in midlatitude and tropical conditions when CAPE is increased with temperature. With the expected 6%–7% increase in CAPE per kelvin of warming, KE only increases at 2%–4% K−1in narrow updrafts but tracks more closely with CAPE at 4%–6% in wider updrafts. Interestingly, the rate of increase in the KE withTbecomes larger than that of CAPE when the later quantity increases at more than 10% K−1. These findings emphasize the importance of considering entrainment in studies of moist convection’s response to climate change, as the entrainment-driven dilution of buoyancy may partially counteract the influence of increases in CAPE on updraft intensity. Significance StatementCumulonimbus clouds mix air with their surrounding environment through a process called entrainment, which controls how efficiently environmental energy is converted into upward speed in thunderstorm updrafts. Our research shows that warmer temperatures will exacerbate the moisture difference between cumulonimbus updrafts and their surroundings, leading to greater mixing and less efficient conversion of environmental energy into updraft speeds. This effect should be considered in future research that investigates how climate change will affect cumulonimbus clouds. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. Abstract Severe convective storms and tornadoes rank among nature’s most hazardous phenomena, inflicting significant property damage and casualties. Near-surface weather conditions are closely governed by large-scale synoptic patterns. It is crucial to delve into the involved multiscale associations to understand tornado potential in response to climate change. Using clustering analysis, this study unveils that leading synoptic patterns driving tornadic storms and associated spatial trends are distinguishable across geographic regions in the U.S. Synoptic patterns with intense forcing featured by intense upper-level eddy kinetic energy and a dense distribution of Z500 fields dominate the increasing trend in tornado frequency in the southeast U.S., generating more tornadoes per event. Conversely, the decreasing trend noted in certain regions of the central Great Plains is associated with weak upper-level synoptic forcing. These findings offer an explanation of observational changes in tornado occurrences, suggesting that the physical mechanisms driving those changes differ across regions. 
    more » « less
  3. Abstract The effect of warming on severe convective storm potential is commonly explained in terms of changes in vertically integrated (“bulk”) environmental parameters, such as CAPE and 0–6-km shear. However, such events are known to depend on the details of the vertical structure of the thermodynamic and kinematic environment that can change independently of these bulk parameters. This work examines how warming may affect the complete vertical structure of these environments for fixed ranges of values of high CAPE and bulk shear, using data over the central Great Plains from two high-performing climate models (CNRM and MPI). To first order, projected changes in the vertical sounding structure are consistent between the two models: the environment warms approximately uniformly with height at constant relative humidity, and the shear profile remains relatively constant. The boundary layer becomes slightly drier (−2% to 6% relative humidity) while the free troposphere becomes slightly moister (+1% to 3%), with a slight increase in moist static energy deficit aloft with stronger magnitude in CNRM. CNRM indicates enhanced low-level shear and storm-relative helicity associated with stronger hodograph curvature in the lowest 2 km, whereas MPI shows near-zero change. Both models strongly underestimate shear below 1 km compared to ERA5, indicating large uncertainty in projecting subtle changes in the low-level flow structure in climate models. The evaluation of the net effect of these modest thermodynamic and kinematic changes on severe convective storm outcomes cannot be ascertained here but could be explored in simulation experiments. Significance StatementSevere thunderstorms and tornadoes cause substantial damage and loss of life each year, which raise concerns about how they may change as the world warms. We typically use a small number of common atmospheric parameters to understand how these localized events may change with climate change. However, climate change may alter the weather patterns that produce these events in ways not captured by these parameters. This work examines how climate change may alter the complete vertical structure of temperature, moisture, and wind and discusses the potential implications of these changes for future severe thunderstorms and tornadoes. 
    more » « less
  4. Abstract Potential temperature and static energy are both useful quantities for understanding our atmosphere, yet static energy receives much less attention in weather science relative to climate science. Bridging this conceptual gap is important, as there is a pressing need for our communities to work together to understand and predict changing weather patterns in a warming world. Here we provide evidence for this gap in usage in American Meteorological Society journal publications and in introductory textbooks. We then describe key benefits of static energy for explaining basic concepts in atmospheric science. We encourage scientists and educators unfamiliar with static energy to familiarize themselves with the concept and consider incorporating it into their science and teaching. 
    more » « less
  5. Abstract This article introduces an analytic formula for entraining convective available potential energy (ECAPE) with an entrainment rate that is determined directly from an environmental sounding, rather than prescribed by the formula user. Entrainment is connected to the background environment using an eddy diffusivity approximation for lateral mixing, updraft geometry assumptions, and mass continuity. These approximations result in a direct correspondence between the storm-relative flow and the updraft radius and an inverse scaling between the updraft radius squared and entrainment rate. The aforementioned concepts, combined with the assumption of adiabatic conservation of moist static energy, yield an explicit analytic equation for ECAPE that depends entirely on state variables in an atmospheric profile and a few constant parameters with values that are established in past literature. Using a simplified Bernoulli-like equation, the ECAPE formula is modified to account for updraft enhancement via kinetic energy extracted from the cloud’s background environment. CAPE and ECAPE can be viewed as predictors of the maximum vertical velocitywmaxin an updraft. Hence, these formulas are evaluated usingwmaxfrom past numerical modeling studies. Both of the new formulas improve predictions ofwmaxsubstantially over commonly used diagnostic parameters, including undiluted CAPE and ECAPE with a constant prescribed entrainment rate. The formula that incorporates environmental kinetic energy contribution to the updraft correctly predicts instances of exceedance ofbywmax, and provides a conceptual explanation for why such exceedance is rare among past simulations. These formulas are potentially useful in nowcasting and forecasting thunderstorms and as thunderstorm proxies in climate change studies. Significance StatementSubstantial mixing occurs between the upward-moving air currents in thunderstorms (updrafts) and the surrounding comparatively dry environmental air, through a process called entrainment. Entrainment controls thunderstorm intensity via its diluting effect on the buoyancy of air within updrafts. A challenge to representing entrainment in forecasting and predictions of the intensity of updrafts in future climates is to determine how much entrainment will occur in a given thunderstorm environment without a computationally expensive high-resolution simulation. To address this gap, this article derives a new formula that computes entrainment from the properties of a single environmental profile. This formula is shown to predict updraft vertical velocity more accurately than past diagnostics, and can be used in forecasting and climate prediction to improve predictions of thunderstorm behavior and impacts. 
    more » « less
  6. Abstract Are the results of aerosol invigoration studies that neglect entrainment valid for diluted deep convective clouds? We address this question by applying an entraining parcel model to soundings from tropical and midlatitude convective environments, wherein pollution is assumed to increase parcel condensate retention. Invigoration of 5%–10% and <2% is possible in undiluted tropical and midlatitude parcels respectively when freezing is rapid. This occurs because the positive buoyancy contribution from freezing is larger than the negative buoyancy contribution from condensate loading, leading to positive net condensate contribution to buoyancy. However, aerosol‐induced weakening is more likely when realistic entrainment rates occur because water losses from entrainment more substantially reduce the latent heating relative to the loading contribution. This leads to larger net negative buoyancy contribution from condensates in polluted than in clean entraining parcels. Our results demonstrate that accounting for entrainment is critical in conceptual models of aerosol indirect effects in deep convection. 
    more » « less
  7. Abstract This work evaluates how well Coupled Model Intercomparison Project 6 models reproduce the climatology of North American severe convective storm (SCS) environments in ERA5 reanalysis and examines what drives biases across models. Biases in spring SCS environments vary widely in magnitude and spatial pattern, though most models do well in reproducing the climatological pattern and a few (MPI and CNRM) also reproduce the overall magnitude. SCS biases are driven by biases in extreme convective available potential energy. These biases are ultimately found to be driven by biases in mean‐state near‐surface moist static energy, indicating that the SCS environments depend strongly on the near‐surface mean state. Results are similar for fall, but not summer or winter when free‐tropospheric biases are also important. Biases differ strongly across parent models but weakly across child models of the same parent. These outcomes help identify models well‐suited for studying climate effects on SCS environments. 
    more » « less
  8. Central North America is the global hotspot for tornadoes, fueled by elevated terrain of the Rockies to the west and a source of warm, moist air from equatorward oceans. This conventional wisdom argues that central South America, with the Andes to the west and Amazon basin to the north, should have a “tornado alley” at least as active as central North America. Central South America has frequent severe thunderstorms yet relatively few tornadoes. Here, we show that conventional wisdom is missing an important ingredient specific to tornadoes: a smooth, flat ocean-like upstream surface. Using global climate model experiments, we show that central South American tornado potential substantially increases if its equatorward land surface is smoothed and flattened to be ocean-like. Similarly, we show that central North American tornado potential substantially decreases if its equatorward ocean surface is roughened to values comparable to forested land. A rough upstream surface suppresses the formation of tornadic environments principally by weakening the poleward low-level winds, characterized by a weakened low-level jet east of the mountain range. Results are shown to be robust for any midlatitude landmass using idealized experiments with a simplified continent and mountain range. Our findings indicate that large-scale upstream surface roughness is likely a first-order driver of the strong contrast in tornado potential between North and South America. 
    more » « less