skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2209181

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc>

    The Electron-Ion Collider (EIC), a forthcoming powerful high-luminosity facility, represents an exciting opportunity to explore new physics. In this article, we study the potential of the EIC to probe the coupling between axion-like particles (ALPs) and photons in coherent scattering. The ALPs can be produced via photon fusion and decay back to two photons inside the EIC detector. In a prompt-decay search, we find that the EIC can set the most stringent bound forma≲ 20 GeV and probe the effective scales Λ ≲ 105GeV. In a displaced-vertex search, which requires adopting an EM calorimeter technology that provides directionality, the EIC could probe ALPs withma≲ 1 GeV at effective scales Λ ≲ 107GeV. Combining the two search strategies, the EIC can probe a significant portion of unexplored parameter space in the 0.2 <ma< 20 GeV mass range.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  2. Free, publicly-accessible full text available August 1, 2024
  3. Free, publicly-accessible full text available August 1, 2024
  4. Free, publicly-accessible full text available July 1, 2024
  5. Free, publicly-accessible full text available July 1, 2024
  6. Free, publicly-accessible full text available July 1, 2024
  7. A bstract In this work, we explore new spin-1 states with axial couplings to the standard model fermions. We develop a data-driven method to estimate their hadronic decay rates based on data from τ decays and using SU(3) flavor symmetry. We derive the current and future experimental constraints for several benchmark models. Our framework is generic and can be used for models with arbitrary vectorial and axial couplings to quarks. We have made our calculations publicly available by incorporating them into the D ark C ast package, see https://gitlab.com/darkcast/releases . 
    more » « less