Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 7, 2026
-
The Boltzmann transport equation (BTE) with electron-phonon (e-ph) interactions computed from first principles is widely used to study electronic transport and nonequilibrium dynamics in materials. Calculating the e-ph collision integral is the most important step in the BTE, but it remains computationally costly, even with current MPI+OpenMP parallelization. This challenge makes it difficult to study materials with large unit cells and to achieve high resolution in momentum space. Here, we show acceleration of BTE calculations of electronic transport and ultrafast dynamics using graphical processing units (GPUs). We implement a novel data structure and algorithm, optimized for GPU hardware and developed using OpenACC, to process scattering channels and efficiently compute the collision integral. This approach significantly reduces the overhead for data referencing, movement, and synchronization. Relative to the efficient CPU implementation in the open-source package Perturbo (v2.2.0), used as a baseline, this approach achieves a speed-up of 40 times for both transport and nonequilibrium dynamics on GPU hardware, and achieves nearly linear scaling up to 100 GPUs. The novel data structure can be generalized to other electron interactions and scattering processes. We released this GPU implementation in the latest public version (v3.0.0) of Perturbo. The new MPI+OpenMP+GPU parallelization enables sweeping studies of e-ph physics and electron dynamics in conventional and quantum materials, and prepares Perturbo for exascale supercomputing platforms.more » « lessFree, publicly-accessible full text available November 5, 2026
-
Free, publicly-accessible full text available August 1, 2026
-
Understanding electronic interactions in high-temperature superconductors is an outstanding challenge. In the widely studied cuprate materials, experimental evidence points to strong electron-phonon ( -ph) coupling and broad photoemission spectra. Yet, the microscopic origin of this behavior is not fully understood. Here, we study -ph interactions and polarons in a prototypical parent (undoped) cuprate, (LCO), by means of first-principles calculations. Leveraging parameter-free Hubbard-corrected density functional theory, we obtain a ground state with the band gap and Cu magnetic moment in nearly exact agreement with experiments. This enables a quantitative characterization of -ph interactions. Our calculations reveal two classes of longitudinal optical (LO) phonons with strong -ph coupling to hole states. These modes consist of bond stretching and bond bending in the Cu-O plane as well as vibrations of apical O atoms. The hole spectral functions, obtained with a cumulant method that can capture strong -ph coupling, exhibit broad quasiparticle peaks with a small spectral weight ( ) and pronounced LO-phonon sidebands characteristic of polaron effects. Our calculations predict features observed in photoemission spectra, including a 40-meV peak in the -ph coupling distribution function not explained by existing models. These results show that the universal strong -ph coupling found experimentally in doped lanthanum cuprates is also present in the parent compound, and elucidate its microscopic origin.more » « lessFree, publicly-accessible full text available March 1, 2026
-
First-principles calculations of electron interactions in materials have seen rapid progress in recent years, with electron-phonon (e-ph) interactions being a prime example. However, these techniques use large matrices encoding the interactions on dense momentum grids, which reduces computational efficiency and obscures interpretability. For e-ph interactions, existing interpolation techniques leverage locality in real space, but the high dimensionality of the data remains a bottleneck to balance cost and accuracy. Here we show an efficient way to compress e-ph interactions based on singular value decomposition (SVD), a widely used matrix and image compression technique. Leveraging (un)constrained SVD methods, we accurately predict material properties related to e-ph interactions—including charge mobility, spin relaxation times, band renormalization, and superconducting critical temperature—while using only a small fraction (1%–2%) of the interaction data. These findings unveil the hidden low-dimensional nature of e-ph interactions. Furthermore, they accelerate state-of-the-art first-principles e-ph calculations by about 2 orders of magnitude without sacrificing accuracy. Our Pareto-optimal parametrization of e-ph interactions can be readily generalized to electron-electron and electron-defect interactions, as well as to other couplings, advancing quantitative studies of condensed matter.more » « less
An official website of the United States government
