skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2209445

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The recent IceCube detection of TeV neutrino emission from the nearby active galaxy NGC 1068 suggests that active galactic nuclei (AGNs) could make a sizable contribution to the diffuse flux of astrophysical neutrinos. The absence of TeVγ-rays from NGC 1068 indicates neutrino production in the vicinity of the supermassive black hole, where the high radiation density leads toγ-ray attenuation. Therefore, any potential neutrino emission from similar sources is not expected to correlate with high-energyγ-rays. Disk-corona models predict neutrino emission from Seyfert galaxies to correlate with keV X-rays because they are tracers of coronal activity. Using through-going track events from the Northern Sky recorded by IceCube between 2011 and 2021, we report results from a search for individual and aggregated neutrino signals from 27 additional Seyfert galaxies that are contained in the Swift's Burst Alert Telescope AGN Spectroscopic Survey. Besides the generic single power law, we evaluate the spectra predicted by the disk-corona model assuming stochastic acceleration parameters that match the measured flux from NGC 1068. Assuming all sources to be intrinsically similar to NGC 1068, our findings constrain the collective neutrino emission from X-ray bright Seyfert galaxies in the northern sky, but, at the same time, show excesses of neutrinos that could be associated with the objects NGC 4151 and CGCG 420-015. These excesses result in a 2.7σsignificance with respect to background expectations. 
    more » « less
    Free, publicly-accessible full text available July 18, 2026
  2. Abstract The Galactic diffuse emission (GDE) is formed when cosmic rays leave the sources where they were accelerated, diffusively propagate in the Galactic magnetic field and interact with the interstellar medium and interstellar radiation field. GDE in γ-rays (GDE-γ) has been observed up to subpetaelectronvolt energies, although its origin may be explained by either cosmic-ray nuclei or electrons. Here we show that the γ-rays accompanying the high-energy neutrinos recently observed by the IceCube Observatory from the Galactic plane have a flux that is consistent with the GDE-γ observed by the Fermi-LAT and Tibet ASγ experiments around 1 TeV and 0.5 PeV, respectively. The consistency suggests that the diffuse γ-ray emission above ~1 TeV could be dominated by hadronuclear interactions, although a partial leptonic contribution cannot be excluded. Moreover, by comparing the fluxes of the Galactic and extragalactic diffuse emission backgrounds, we find that the neutrino luminosity of the Milky Way is one-to-two orders of magnitude lower than the average of distant galaxies. This finding implies that our Galaxy has not hosted the type of neutrino emitters that dominates the isotropic neutrino background at least in the past few tens of kiloyears. 
    more » « less
  3. Abstract We report a search for high-energy astrophysical neutrino multiplets, detections of multiple neutrino clusters in the same direction within 30 days, based on an analysis of 11.4 yr of IceCube data. A new search method optimized for transient neutrino emission with a monthly timescale is employed, providing a higher sensitivity to neutrino fluxes. This result is sensitive to neutrino transient emission, reaching per-flavor flux of approximately 1 0 10 erg cm 2 s 1 from the Northern Sky in the energy rangeE ≳ 50 TeV. The number of doublets and triplets identified in this search is compatible with the atmospheric background hypothesis, which leads us to set limits on the nature of neutrino transient sources with emission timescales of one month. 
    more » « less
    Free, publicly-accessible full text available March 10, 2026
  4. Abstract High-energy neutrino andγ-ray emission has been observed from the Galactic plane, which may come from individual sources and/or diffuse cosmic rays. We evaluate the contribution of these two components through the multimessenger connection between neutrinos andγ-rays in hadronic interactions. We derive maximum fluxes of neutrino emission from the Galactic plane usingγ-ray catalogs, including 4FGL, HGPS, 3HWC, and 1LHAASO, and measurements of the Galactic diffuse emission by Tibet ASγand LHAASO. We find that the IceCube Galactic neutrino flux is larger than the contribution from all resolved sources when excluding promising leptonic sources such as pulsars, pulsar wind nebulae, and TeV halos. Our result indicates that the Galactic neutrino emission is likely dominated by the diffuse emission by the cosmic-ray sea and unresolved hadronicγ-ray sources. In addition, the IceCube flux is comparable to the sum of the flux of nonpulsar sources and the LHAASO diffuse emission especially above ∼30 TeV. This implies that the LHAASO diffuse emission may dominantly originate from hadronic interactions, either as the truly diffuse emission or unresolved hadronic emitters. Future observations of neutrino telescopes and air-showerγ-ray experiments in the Southern hemisphere are needed to accurately disentangle the source and diffuse emission of the Milky Way. 
    more » « less
  5. Abstract The nature of dark matter remains unresolved in fundamental physics. Weakly Interacting Massive Particles (WIMPs), which could explain the nature of dark matter, can be captured by celestial bodies like the Sun or Earth, leading to enhanced self-annihilation into Standard Model particles including neutrinos detectable by neutrino telescopes such as the IceCube Neutrino Observatory. This article presents a search for muon neutrinos from the center of the Earth performed with 10 years of IceCube data using a track-like event selection. We considered a number of WIMP annihilation channels ($$\chi \chi \rightarrow \tau ^+\tau ^-$$ χ χ τ + τ - /$$W^+W^-$$ W + W - /$$b\bar{b}$$ b b ¯ ) and masses ranging from 10 GeV to 10 TeV. No significant excess over background due to a dark matter signal was found while the most significant result corresponds to the annihilation channel$$\chi \chi \rightarrow b\bar{b}$$ χ χ b b ¯ for the mass$$m_{\chi }=250$$ m χ = 250  GeV with a post-trial significance of$$1.06\sigma $$ 1.06 σ . Our results are competitive with previous such searches and direct detection experiments. Our upper limits on the spin-independent WIMP scattering are world-leading among neutrino telescopes for WIMP masses$$m_{\chi }>100$$ m χ > 100  GeV. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  6. Abstract High-energy neutrinos are detected by the IceCube Observatory in the direction of NGC 1068, the archetypical type II Seyfert galaxy. The neutrino flux, surprisingly, is more than an order of magnitude higher than theγ-ray upper limits at measured TeV energy, posing tight constraints on the physical conditions of a neutrino production site. We report an analysis of the submillimeter, mid-infrared, and ultraviolet observations of the central 50 pc of NGC 1068 and suggest that the inner dusty torus and the region where the jet interacts with the surrounding interstellar medium (ISM) may be a potential neutrino production site. Based on radiation and magnetic field properties derived from observations, we calculate the electromagnetic cascade of theγ-rays accompanying the neutrinos. When injecting protons with a hard spectrum, our model may explain the observed neutrino flux above ∼10 TeV. It predicts a unique sub-TeVγ-ray component, which could be identified by a future observation. Jet–ISM interactions are commonly observed in the proximity of jets of both supermassive and stellar-mass black holes. Our results imply that such interaction regions could beγ-ray-obscured neutrino production sites, which are needed to explain the IceCube diffuse neutrino flux. 
    more » « less
  7. Abstract We analyzed the 7.92 × 1011cosmic-ray-induced muon events collected by the IceCube Neutrino Observatory from 2011 May 13, when the fully constructed experiment started to take data, to 2023 May 12. This data set provides an up-to-date cosmic-ray arrival direction distribution in the Southern Hemisphere with unprecedented statistical accuracy covering more than a full period length of a solar cycle. Improvements in Monte Carlo event simulation and better handling of year-to-year differences in data processing significantly reduce systematic uncertainties below the level of statistical fluctuations compared to the previously published results. We confirm the observation of a change in the angular structure of the cosmic-ray anisotropy between 10 TeV and 1 PeV, more specifically in the 100–300 TeV energy range. For the first time, we analyzed the angular power spectrum at different energies. The observed variations of the power spectra with energy suggest relatively reduced large-scale features at high energy compared to those of medium and small scales. The large volume of data enhances the statistical significance at higher energies, up to the PeV scale, and smaller angular scales, down to approximately 6° compared to previous findings. 
    more » « less
    Free, publicly-accessible full text available March 7, 2026
  8. Abstract While the sources of the diffuse astrophysical neutrino flux detected by the IceCube Neutrino Observatory are still largely unknown, one of the promising methods to improve our understanding of them is investigating the potential temporal and spatial correlations between neutrino alerts and the electromagnetic radiation from blazars. We report on the multiwavelength target-of-opportunity observations of the blazar B3 2247+381, taken in response to an IceCube multiplet alert for a cluster of muon neutrino events compatible with the source location between 2022 May 20 and 2022 November 10. B3 2247+381 was not detected with VERITAS during this time period. The source was found to be in a low-flux state in the optical, ultraviolet, and gamma-ray bands for the time interval corresponding to the neutrino event, but was detected in the hard X-ray band with NuSTAR during this period. We find the multiwavelength spectral energy distribution is described well using a simple one-zone leptonic synchrotron self-Compton radiation model. Moreover, assuming the neutrinos originate from hadronic processes within the jet, the neutrino flux would be accompanied by a photon flux from the cascade emission, and the integrated photon flux required in such a case would significantly exceed the total multiwavelength fluxes and the VERITAS upper limits presented here. The lack of flaring activity observed with VERITAS, combined with the low multiwavelength flux levels, as well as the significance of the neutrino excess being at a 3σlevel (uncorrected for trials), makes B3 2247+381 an unlikely source of the IceCube multiplet. We conclude that the neutrino excess is likely a background fluctuation. 
    more » « less
    Free, publicly-accessible full text available March 20, 2026
  9. Abstract Active galactic nuclei (AGN) are promising candidate sources of high-energy astrophysical neutrinos, since they provide environments rich in matter and photon targets where cosmic-ray interactions may lead to the production of gamma rays and neutrinos. We searched for high-energy neutrino emission from AGN using the Swift-BAT Spectroscopic Survey catalog of hard X-ray sources and 12 yr of IceCube muon track data. First, upon performing a stacked search, no significant emission was found. Second, we searched for neutrinos from a list of 43 candidate sources and found an excess from the direction of two sources, the Seyfert galaxies NGC 1068 and NGC 4151. We observed NGC 1068 at flux ϕ ν μ + ν ¯ μ = 4.0 2 1.52 + 1.58 × 1 0 11 TeV−1cm−2s−1normalized at 1 TeV, with a power-law spectral indexγ= 3.10 0.22 + 0.26 , consistent with previous IceCube results. The observation of a neutrino excess from the direction of NGC 4151 is at a posttrial significance of 2.9σ. If interpreted as an astrophysical signal, the excess observed from NGC 4151 corresponds to a flux ϕ ν μ + ν ¯ μ = 1.5 1 0.81 + 0.99 × 1 0 11 TeV−1cm−2s−1normalized at 1 TeV andγ= 2.83 0.28 + 0.35
    more » « less
    Free, publicly-accessible full text available March 4, 2026
  10. Abstract The origin of high-energy galactic cosmic rays is yet to be understood, but some galactic cosmic-ray accelerators can accelerate cosmic rays up to PeV energies. The high-energy cosmic rays are expected to interact with the surrounding material or radiation, resulting in the production of gamma-rays and neutrinos. To optimize for the detection of such associated production of gamma-rays and neutrinos for a given source morphology and spectrum, a multimessenger analysis that combines gamma-rays and neutrinos is required. In this study, we use the Multi-Mission Maximum Likelihood framework with IceCube Maximum Likelihood Analysis software and HAWC Accelerated Likelihood to search for a correlation between 22 known gamma-ray sources from the third HAWC gamma-ray catalog and 14 yr of IceCube track-like data. No significant neutrino emission from the direction of the HAWC sources was found. We report the best-fit gamma-ray model and 90% CL neutrino flux limit from the 22 sources. From the neutrino flux limit, we conclude that, for five of the sources, the gamma-ray emission observed by HAWC cannot be produced purely from hadronic interactions. We report the limit for the fraction of gamma-rays produced by hadronic interactions for these five sources. 
    more » « less