Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This paper presents a model-agnostic search for narrow resonances in the dijet final state in the mass range 1.8–6 TeV. The signal is assumed to produce jets with substructure atypical of jets initiated by light quarks or gluons, with minimal additional assumptions. Search regions are obtained by utilizing multivariate machine-learning methods to select jets with anomalous substructure. A collection of complementary anomaly detection methods—based on unsupervised, weakly supervised, and semisupervised algorithms—are used in order to maximize the sensitivity to unknown new physics signatures. These algorithms are applied to data corresponding to an integrated luminosity of 138 fb−1, recorded by the CMS experiment at the LHC, at a center-of-mass energy of 13 TeV. No significant excesses above background expectations are seen. Exclusion limits are derived on the production cross section of benchmark signal models varying in resonance mass, jet mass, and jet substructure. Many of these signatures have not been previously sought, making several of the limits reported on the corresponding benchmark models the first ever. When compared to benchmark inclusive and substructure-based search strategies, the anomaly detection methods are found to significantly enhance the sensitivity to a variety of models.more » « less
-
A<sc>bstract</sc> Measurements of light-by-light scattering (LbL,γγ → γγ) and the Breit-Wheeler process (BW,γγ →e+e−) are reported in ultraperipheral PbPb collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV. The data sample, corresponding to an integrated luminosity of 1.7 nb−1, was collected by the CMS experiment at the CERN LHC in 2018. Events with an exclusively producedγγore+e−pair with invariant massesmγγ,ee>5 GeV, along with other fiducial criteria, are selected. The measured BW fiducial production cross section,σfid(γγ → e+e−) = 263.5±1.8(stat)±17.8(syst)μb, as well as the differential distributions for various kinematic observables, are in agreement with leading-order quantum electrodynamics predictions complemented with final-state photon radiation. The measured differential BW cross sections allow discrimination between different theoretical descriptions of the photon flux of the lead ion. In the LbL final state, 26 exclusive diphoton candidate events are observed compared with 12.0 ± 2.9 expected for the background. Combined with previous results, the observed significance of the LbL signal with respect to the background-only hypothesis is above five standard deviations. The measured fiducial LbL scattering cross section,σfid(γγ→γγ) = 107 ± 24(stat) ± 13(syst) nb, is in agreement with next- to-leading-order predictions. Limits on the production of axion-like particles coupled to photons are set over the mass range 5–100 GeV, including the most stringent limits to date in the range of 5–10 GeV.more » « lessFree, publicly-accessible full text available August 1, 2026
-
A<sc>bstract</sc> The jet axis decorrelation in inclusive jets is studied using lead-lead (PbPb) collisions at a center-of-mass energy per nucleon pair of 5.02 TeV. The jet axis decorrelation is defined as the angular difference between two definitions of the jet axis. It is obtained by applying two recombination schemes on all the constituents of a given jet reconstructed by the anti-kTsequential algorithm with a distance parameter ofR= 0.4. The data set, corresponding to an integrated luminosity of 0.66 nb−1, was collected in 2018 with the CMS detector at the CERN LHC. The jet axis decorrelations are examined across collision centrality selections and intervals of jet transverse momentum. A centrality dependent evolution of the measured distributions is observed, with a progressive narrowing seen in more central events. This narrowing could result from medium-induced modification of the internal jet structure or reflect color charge effects in energy loss. This new measurement probes jet substructure in previously unexplored kinematic domains and show great promise for providing new insights on the color charge dependence of energy loss to jet-quenching models.more » « lessFree, publicly-accessible full text available June 1, 2026
-
A<sc>bstract</sc> A search for beyond-the-standard-model neutral Higgs bosons decaying to a pair of bottom quarks, and produced in association with at least one additional bottom quark, is performed with the CMS detector. The data were recorded in proton-proton collisions at a centre-of-mass energy of 13 TeV at the CERN LHC and correspond to an integrated luminosity of 36.7–126.9 fb−1, depending on the probed mass range. No signal above the standard model background expectation is observed. Upper limits on the production cross section times branching fraction are set for Higgs bosons in the mass range of 125–1800 GeV. The results are interpreted in benchmark scenarios of the minimal supersymmetric standard model, as well as suitable classes of two-Higgs-doublet models.more » « lessFree, publicly-accessible full text available June 1, 2026
-
A<sc>bstract</sc> The measurements of the Higgs boson (H) production cross sections performed by the CMS Collaboration in the four-lepton (4ℓ, ℓ= e,μ) final state at a center-of-mass energy$$\sqrt{s}$$= 13.6 TeV are presented. These measurements are based on data collected with the CMS detector at the CERN LHC in 2022, corresponding to an integrated luminosity of 34.7 fb−1. Cross sections are measured in a fiducial region closely matching the experimental acceptance, both inclusively and differentially, as a function of the transverse momentum and the absolute value of the rapidity of the four-lepton system. The H → ZZ → 4ℓinclusive fiducial cross section is measured to be$${2.89}_{-0.49}^{+0.53}{\left({\text{stat}}\right)}_{-0.21}^{+0.29}\left({\text{syst}}\right)$$fb, in agreement with the standard model expectation of$${3.09}_{-0.24}^{+0.27}$$fb.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Abstract “Soft” muons with a transverse momentum below 10 GeV are featured in many processes studied by the CMS experiment, such as decays of heavy-flavor hadrons or rare tau lepton decays. Maximizing the selection efficiency for these muons, while simultaneously suppressing backgrounds from long-lived light-flavor hadron decays, is therefore important for the success of the CMS physics program. Multivariate techniques have been shown to deliver better muon identification performance than traditional selection techniques. To take full advantage of the large data set currently being collected during Run 3 of the CERN LHC, a new multivariate classifier based on a gradient-boosted decision tree has been developed. It offers a significantly improved separation of signal and background muons compared to a similar classifier used for the analysis of the Run 2 data. The performance of the new classifier is evaluated on a data set collected with the CMS detector in 2022 and 2023, corresponding to an integrated luminosity of 62 fb-1.more » « lessFree, publicly-accessible full text available April 1, 2026
-
A<sc>bstract</sc> The inclusive WZ production cross section is measured in proton-proton collisions at a centre-of-mass energy of 13.6 TeV, using data collected during 2022 with the CMS detector, corresponding to an integrated luminosity of 34.7 fb−1. The measurement uses multileptonic final states and a simultaneous likelihood fit to the number of events in four different lepton flavour categories: eee, eeμ,μμe, andμμμ. The selection is optimized to minimize the number of background events, and relies on an efficient prompt lepton discrimination strategy. The WZ production cross section is measured in a phase space defined within a 30 GeV window around the Z boson mass, asσtotal(pp → WZ) = 55.2 ± 1.2 (stat) ± 1.2 (syst) ± 0.8 (lumi) ± 0.3 (theo) pb. In addition, the cross section is measured in a fiducial phase space closer to the detector-level requirements. All the measurements presented in this paper are in agreement with standard model predictions.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available September 1, 2026
-
Abstract A measurement is presented of a ratio observable that provides a measure of the azimuthal correlations among jets with large transverse momentum$$p_{\textrm{T}}$$ . This observable is measured in multijet events over the range of$$p_{\textrm{T}} = 360$$ –$$3170\,\text {Ge}\hspace{-.08em}\text {V} $$ based on data collected by the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13$$\,\text {Te}\hspace{-.08em}\text {V}$$ , corresponding to an integrated luminosity of 134$$\,\text {fb}^{-1}$$ . The results are compared with predictions from Monte Carlo parton-shower event generator simulations, as well as with fixed-order perturbative quantum chromodynamics (pQCD) predictions at next-to-leading-order (NLO) accuracy obtained with different parton distribution functions (PDFs) and corrected for nonperturbative and electroweak effects. Data and theory agree within uncertainties. From the comparison of the measured observable with the pQCD prediction obtained with the NNPDF3.1 NLO PDFs, the strong coupling at the Z boson mass scale is$$\alpha _\textrm{S} (m_{{\textrm{Z}}}) =0.1177 \pm 0.0013\, \text {(exp)} _{-0.0073}^{+0.0116} \,\text {(theo)} = 0.1177_{-0.0074}^{+0.0117}$$ , where the total uncertainty is dominated by the scale dependence of the fixed-order predictions. A test of the running of$$\alpha _\textrm{S}$$ in the$$\,\text {Te}\hspace{-.08em}\text {V}$$ region shows no deviation from the expected NLO pQCD behaviour.more » « less
-
Abstract A study of the anomalous couplings of the Higgs boson to vector bosons, including$${\textit{CP}}$$ -violation effects, has been conducted using its production and decay in the WW channel. This analysis is performed on proton–proton collision data collected with the CMS detector at the CERN LHC during 2016–2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of 138$$\,\text {fb}^{-1}$$ . The different-flavor dilepton$$({\textrm{e}} {{\upmu }})$$ final state is analyzed, with dedicated categories targeting gluon fusion, electroweak vector boson fusion, and associated production with a W or Z boson. Kinematic information from associated jets is combined using matrix element techniques to increase the sensitivity to anomalous effects at the production vertex. A simultaneous measurement of four Higgs boson couplings to electroweak vector bosons is performed in the framework of a standard model effective field theory. All measurements are consistent with the expectations for the standard model Higgs boson and constraints are set on the fractional contribution of the anomalous couplings to the Higgs boson production cross section.more » « less
An official website of the United States government
