skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2209578

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Very different processes characterize the decoupling of neutrinos to form the cosmic neutrino background (CνB) and the much later decoupling of photons from thermal equilibrium to form the cosmic microwave background (CMB). The CνB emerges from the fuzzy, energy-dependent neutrinosphere and encodes the physics operating in the early universe in the temperature rangeT∼ 10 MeV toT∼ 10 keV. This is the epoch where beyond Standard Model (BSM) physics, especially in the neutrino sector, may be influential in setting the light element abundances, the necessarily distorted fossil neutrino energy spectra, and other light particle energy density contributions. Here we use techniques honed in extensive CMB studies to analyze the CνB as calculated in detailed neutrino energy transport and nuclear reaction simulations of the protracted weak decoupling and primordial nucleosynthesis epochs. Our moment method, relative entropy, and differential visibility approach can leverage future high precision CMB and light element primordial abundance measurements to provide new insights into the CνB and any BSM physics it encodes. We demonstrate that the evolution of the energy spectrum of the CνB throughout the weak decoupling epoch is accurately captured in the Standard Model by only three parameters per species, a non-trivial conclusion given the deviation from thermal equilibrium and the impact of the decrease of electron-positron pairs. Furthermore, we can interpret each of the three parameters as physical characteristics of a non-equilibrium system. Though the treatment presented here makes some simplifying assumptions including ignoring neutrino flavor oscillations, the success of our compact description within the Standard Model motivates its use also in BSM scenarios. We further demonstrate how observations of primordial light element abundances can be used to place constraints on the CνB energy spectrum, deriving response functions that can be applied for general deviations from a thermal spectrum. Combined with the description of those deviations that we develop here, our methods provide a convenient and powerful framework to constrain the impact of BSM physics on the CνB. 
    more » « less
  2. The indirect detection of dark matter (DM) through its annihilation products is one of the primary strategies for DM detection. One of the least constrained classes of models is neutrinophilic DM, because the annihilation products, weakly interacting neutrinos, are challenging to observe. Here, we consider a scenario where MeV-mass DM exclusively annihilates to the third neutrino mass eigenstate, which is predominantly of tau and muon flavor. In such a scenario, the potential detection rate of the neutrinos originating from the DM annihilation in our Galaxy in the conventional detectors would be suppressed by up to approximately two orders of magnitude. This is because the best sensitivity of such detectors for neutrinos with energies below approximately 100 MeV is for electron neutrino flavor. In this work, we highlight the potential of large-scale DM detectors in uncovering such signals in the tens of MeV range of DM masses. In addition, we discuss how coincident signals in direct detection DM experiments and upcoming neutrino detectors such as DUNE, Hyper-Kamiokande, and JUNO could provide new perspectives on the DM problem. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. We present a mechanism for producing a cosmologically significant relic density of one or more sterile neutrinos. This scheme invokes two steps: First, a population of “heavy” sterile neutrinos is created by scattering-induced decoherence of active neutrinos. Second, this population is transferred, via sterile neutrino self-interaction-mediated scatterings and decays, to one or more lighter mass ( 10 keV to 1 GeV ) sterile neutrinos that are far more weakly (or not at all) mixed with active species and could constitute dark matter. Dark matter produced this way can evade current electromagnetic and structure-based bounds, but may nevertheless be probed by future observations. Published by the American Physical Society2024 
    more » « less
  4. The neutrinos in the diffuse supernova neutrino background (DSNB) travel over cosmological distances and this provides them with an excellent opportunity to interact with dark relics. We show that a cosmologically significant relic population of keV-mass sterile neutrinos with strong self-interactions could imprint their presence in the DSNB. The signatures of the self-interactions would be “dips” in the otherwise smooth DSNB spectrum. Upcoming large-scale neutrino detectors, for example Hyper-Kamiokande, have a good chance of detecting the DSNB and these dips. If no dips are detected, this method serves as an independent constraint on the sterile neutrino self-interaction strength and mixing with active neutrinos. We show that relic sterile neutrino parameters that evade x-ray and structure bounds may nevertheless be testable by future detectors like TRISTAN, but may also produce dips in the DSNB which could be detectable. Such a detection would suggest the existence of a cosmologically significant, strongly self-interacting sterile neutrino background, likely embedded in a richer dark sector. 
    more » « less