skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2209717

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report the development and testing of new integrated cyberinfrastructure for performing free energy simulations with generalized hybrid quantum mechanical/molecular mechanical (QM/MM) and machine learning potentials (MLPs) in Amber. The Sander molecular dynamics program has been extended to leverage fast, density-functional tight-binding models implemented in the DFTB+ and xTB packages, and an interface to the DeePMD-kit software enables the use of MLPs. The software is integrated through application program interfaces that circumvent the need to perform “system calls” and enable the incorporation of long-range Ewald electrostatics into the external software’s self-consistent field procedure. The infrastructure provides access to QM/MM models that may serve as the foundation for QM/MM–ΔMLP potentials, which supplement the semiempirical QM/MM model with a MLP correction trained to reproduce ab initio QM/MM energies and forces. Efficient optimization of minimum free energy pathways is enabled through a new surface-accelerated finite-temperature string method implemented in the FE-ToolKit package. Furthermore, we interfaced Sander with the i-PI software by implementing the socket communication protocol used in the i-PI client–server model. The new interface with i-PI allows for the treatment of nuclear quantum effects with semiempirical QM/MM–ΔMLP models. The modular interoperable software is demonstrated on proton transfer reactions in guanine-thymine mispairs in a B-form deoxyribonucleic acid helix. The current work represents a considerable advance in the development of modular software for performing free energy simulations of chemical reactions that are important in a wide range of applications. 
    more » « less
  2. Bhatele, A.; Hammond, J.; Baboulin, M.; Kruse, C. (Ed.)
    The reactive force field (ReaxFF) interatomic potential is a powerful tool for simulating the behavior of molecules in a wide range of chemical and physical systems at the atomic level. Unlike traditional classical force fields, ReaxFF employs dynamic bonding and polarizability to enable the study of reactive systems. Over the past couple decades, highly optimized parallel implementations have been developed for ReaxFF to efficiently utilize modern hardware such as multi-core processors and graphics processing units (GPUs). However, the complexity of the ReaxFF potential poses challenges in terms of portability to new architectures (AMD and Intel GPUs, RISC-V processors, etc.), and limits the ability of computational scientists to tailor its functional form to their target systems. In this regard, the convergence of cyber-infrastructure for high performance computing (HPC) and machine learning (ML) presents new opportunities for customization, programmer productivity and performance portability. In this paper, we explore the benefits and limitations of JAX, a modern ML library in Python representing a prime example of the convergence of HPC and ML software, for implementing ReaxFF. We demonstrate that by leveraging auto-differentiation, just-in-time compilation, and vectorization capabilities of JAX, one can attain a portable, performant, and easy to maintain ReaxFF software. Beyond enabling MD simulations, end-to-end differentiability of trajectories produced by ReaxFF implemented with JAX makes it possible to perform related tasks such as force field parameter optimization and meta-analysis without requiring any significant software developments. We also discuss scalability limitations using the current version of JAX for ReaxFF simulations. 
    more » « less