skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2209807

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We explore the potential for repeat‐pass SAR Interferometry (InSAR) correlation to track volcanic activity on Venus' surface motivated by future SAR missions to Earth's sister planet. We use Hawai'i as a natural laboratory to test whether InSAR can detect lava flows assuming orbital and instrument parameters similar to that of a Venus mission. Hawai'i was chosen because lava flows are frequent, and well documented by the United States Geological Survey, and because Hawai'i is a SAR supersite, where space agencies have offered open radar data sets for analysis. These data sets have different wavelengths (L, C, and X bands), bandwidths, polarizations, look angles, and a variety of orbital baselines, giving opportunity to assess the suitability of parameters for detecting lava flows. We analyze data from ALOS‐2 (L‐band), Sentinel‐1 (C‐band), and COSMO‐SkyMed (X‐band) spanning 2018 and 2022. We perform SAR amplitude and InSAR correlation analysis over temporal baselines and perpendicular baselines similar to those of a Venus mission. Fresh lava flows create a sharp, noticeable decrease in InSAR correlation that persists indefinitely for images spanning the event. The same lava flows are not always visible in the corresponding amplitude images. Moreover, noticeable decorrelation persists in image pairs acquired months after the events due to post‐emplacement contraction of flows. Post‐emplacement effects are hypothesized to last longer on the Venusian surface, increasing the likelihood of detecting Venus lava flows using InSAR. We argue for further focus on repeat‐pass InSAR capabilities in upcoming Venus missions, to detect and quantify volcanic activity on Earth's hotter twin. 
    more » « less
  2. Earthquakes pose a major threat to the people of Haiti, as tragically shown by the catastrophic 2010 Mw 7.0 earthquake and more recently by the 2021 Mw 7.2 earthquake. Both events occurred within the transpressional Enriquillo–Plantain Garden fault zone (EPGFZ), which runs through the southern peninsula of Haiti and is a major source of seismic hazard for the region. Satellite-based Interferometric Synthetic Aperture Radar (InSAR) data are used to illuminate the ground deformation patterns associated with the 2021 event. The analysis of Sentinel-1 and Advanced Land Observation Satellite (ALOS)-2 InSAR data shows (1) the broad coseismic deformation field; (2) detailed secondary fault structures as far as 12 km from the main Enriquillo–Plantain Garden fault (EPGF), which are active during and after the earthquake; and (3) postseismic shallow slip, which migrates along an ∼40 km unruptured section of the EPGF for approximately two weeks following the earthquake. The involvement of secondary faults in this rupture requires adjustments to the representation of hazard that assumes a simple segmented strike-slip EPGF. This work presents the first successful use of phase gradient techniques to map postseismic deformation in a vegetated region, which opens the door to future studies of a larger number of events in a wider variety of climates. 
    more » « less