Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cell-free networks have emerged as a new paradigm for beyond-5G networks, offering uniform coverage and improved control over interference. However, scalability poses a challenge in full cell-free networks, where all access points (APs) serve all users. This challenge is addressed by user-centric clustering, where each user is served by a subset of APs, reducing complexity while maintaining coverage. In this paper, we provide an analysis of the relation between the user-centric clustering and pilot assignment problems in cell-free networks, and introduce a formulation which decouples both problems enabling each to be solved independently. We present a general problem formulation for the user-centric clustering problem, allowing the use of diverse per-user and network-wide performance metrics. Specifically, we focus on one instance of this framework, utilizing per-user spectral efficiency and network-wide sum spectral efficiency (SE) as metrics. Additionally, we formulate the pilot assignment problem to minimize overall channel estimation error while considering the user-centric clusters in evaluating the desirability of pilot assignments, which leads to better performing solutions. Both problems are classified as binary nonlinear programs that are at least NP-hard. To solve these optimization problems, our proposed methodology employs sample average approximation coupled with surrogate optimization for the user-centric clustering problem and utilizes the genetic algorithm for the pilot assignment problem. Numerical experiments demonstrate that the optimized solutions surpass baseline solutions, leading to significant improvements in spectral efficiency.more » « lessFree, publicly-accessible full text available April 3, 2026
-
WiGig networks and 60 GHz frequency communications have a lot of potential for commercial and personal use. The high-frequency bands can provide high transmission rates, but their high amplitude makes it so the signal cannot go through any walls or obstacles. The signal also has a strong path loss element caused by the high frequency, significantly limiting the reach of connections because the signal is too weak at moderate distances. Due to these issues, users can easily lose connection with the access point while moving and need to connect to a new device, making WiGig systems unstable as they need to rely on frequent handovers to maintain a high-quality service. However, this solution is problematic as it forces users into bad connections and downtime before they are switched to a better access point. In this work, we use machine learning to identify patterns in user behaviors and predict user actions. This prediction is used to do proactive handovers, switching users to access points with better future transmission rates and a more stable environment based on the future state of the user. Results show that not only the proposal is effective at predicting channel data, but the use of such predictions improves system performance and avoids unnecessary handovers.more » « less
-
This paper addresses the user-centric clustering and pilot assignment problems in cell-free networks, recognizing the need to solve both problems simultaneously. The motivation of this research stems from the absence of benchmarks, general formulations, and the reliance on subjectively designed objective functions and heuristic algorithms prevalent in existing literature. To tackle these challenges, we formulate stochastic non-linear binary integer programs for both the user-centric clustering and pilot assignment problems. We specifically design the pilot assignment formulation to incorporate user-centric clusters when evaluating the desirability of pilot assignments, resulting in improved efficiency. To solve the problems, the proposed methodology employs sample average approximation coupled with surrogate optimization for the user-centric clustering problem and the genetic algorithm for the pilot assignment problem. Numerical experiments demonstrate that the optimized solutions outperform baseline solutions, leading to significant gains in spectral efficiency.more » « less
-
The mmWave WiGig frequency band can support high throughput and low latency emerging applications. In this context, accurate prediction of channel gain enables seamless connectivity with user mobility via proactive handover and beamforming. Machine learning techniques have been widely adopted in literature for mmWave channel prediction. However, the existing techniques assume that the indoor mmWave channel follows a stationary stochastic process. This paper demonstrates that indoor WiGig mmWave channels are non-stationary where the channel’s cumulative distribution function (CDF) changes with the user’s spatio-temporal mobility. Specifically, we show significant differences in the empirical CDF of the channel gain based on the user’s mobility stage, namely, room entering, wandering, and exiting. Thus, the dynamic WiGig mmWave indoor channel suffers from concept drift that impedes the generalization ability of deep learning-based channel prediction models. Our results demonstrate that a state-of-the-art deep learning channel prediction model based on a hybrid convolutional neural network (CNN) long-short-term memory (LSTM) recurrent neural network suffers from a deterioration in the prediction accuracy by 11–68% depending on the user’s mobility stage and the model’s training. To mitigate the negative effect of concept drift and improve the generalization ability of the channel prediction model, we develop a robust deep learning model based on an ensemble strategy. Our results show that the weight average ensemble-based model maintains a stable prediction that keeps the performance deterioration below 4%.more » « less
An official website of the United States government
