- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
22
- Author / Contributor
- Filter by Author / Creator
-
-
Levina, Elizaveta (4)
-
Zhu, Ji (2)
-
Cerqueira, Andressa (1)
-
Li, Tianxi (1)
-
Lunde, Robert (1)
-
Panigrahi, Snigdha (1)
-
Sripada, Chandra (1)
-
Stewart, Natasha (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2027
-
Lunde, Robert; Levina, Elizaveta; Zhu, Ji (, Journal of the American Statistical Association)Free, publicly-accessible full text available July 23, 2026
-
Panigrahi, Snigdha; Stewart, Natasha; Sripada, Chandra; Levina, Elizaveta (, The Annals of Applied Statistics)
-
Li, Tianxi; Levina, Elizaveta; Zhu, Ji (, Journal of machine learning research)Communities are a common and widely studied structure in networks, typically assum- ing that the network is fully and correctly observed. In practice, network data are often collected by querying nodes about their connections. In some settings, all edges of a sam- pled node will be recorded, and in others, a node may be asked to name its connections. These sampling mechanisms introduce noise and bias, which can obscure the community structure and invalidate assumptions underlying standard community detection methods. We propose a general model for a class of network sampling mechanisms based on recording edges via querying nodes, designed to improve community detection for network data col- lected in this fashion. We model edge sampling probabilities as a function of both individual preferences and community parameters, and show community detection can be performed by spectral clustering under this general class of models. We also propose, as a special case of the general framework, a parametric model for directed networks we call the nomination stochastic block model, which allows for meaningful parameter interpretations and can be fitted by the method of moments. In this case, spectral clustering and the method of mo- ments are computationally ecient and come with theoretical guarantees of consistency. We evaluate the proposed model in simulation studies on unweighted and weighted net- works and under misspecified models. The method is applied to a faculty hiring dataset, discovering a meaningful hierarchy of communities among US business schools.more » « less
An official website of the United States government

Full Text Available