skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2210640

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Individualized modeling has become increasingly popular in recent years with its growing application in fields such as personalized medicine and mobile health studies. With rich longitudinal measurements, it is of great interest to model certain subject‐specific time‐varying covariate effects. In this paper, we propose an individualized time‐varying nonparametric model by leveraging the subgroup information from the population. The proposed method approximates the time‐varying covariate effect using nonparametric B‐splines and aggregates the estimated nonparametric coefficients that share common patterns. Moreover, the proposed method can effectively handle various missing data patterns that frequently arise in mobile health data. Specifically, our method achieves subgrouping by flexibly accommodating varying dimensions of B‐spline coefficients due to missingness. This capability sets it apart from other fusion‐type approaches for subgrouping. The subgroup information can also potentially provide meaningful insight into the characteristics of subjects and assist in recommending an effective treatment or intervention. An efficient ADMM algorithm is developed for implementation. Our numerical studies and application to mobile health data on monitoring pregnant women's deep sleep and physical activities demonstrate that the proposed method achieves better performance compared to other existing methods. 
    more » « less
  2. Summary Mobile health has emerged as a major success for tracking individual health status, due to the popularity and power of smartphones and wearable devices. This has also brought great challenges in handling heterogeneous, multi-resolution data that arise ubiquitously in mobile health due to irregular multivariate measurements collected from individuals. In this paper, we propose an individualized dynamic latent factor model for irregular multi-resolution time series data to interpolate unsampled measurements of time series with low resolution. One major advantage of the proposed method is the capability to integrate multiple irregular time series and multiple subjects by mapping the multi-resolution data to the latent space. In addition, the proposed individualized dynamic latent factor model is applicable to capturing heterogeneous longitudinal information through individualized dynamic latent factors. Our theory provides a bound on the integrated interpolation error and the convergence rate for B-spline approximation methods. Both the simulation studies and the application to smartwatch data demonstrate the superior performance of the proposed method compared to existing methods. 
    more » « less
  3. Background:Sleep disturbances are associated with adverse perinatal outcomes. Thus, it is necessary to understand the continuous patterns of sleep during pregnancy and how moderators such as maternal age and pre-pregnancy body mass index impact sleep. Objective:This study aimed to examine the continuous changes in sleep parameters objectively (i.e. sleep stages, total sleep time, and awake time) in pregnant women and to describe the impact of maternal age and/or pre-pregnancy body mass index as moderators of these objective sleep parameters. Design:This was a longitudinal observational design. Methods:Seventeen women with a singleton pregnancy participated in this study. Mixed model repeated measures were used to describe weekly patterns, while aggregated changes describe these three pregnancy periods (10–19, 20–29, and 30–39 gestational weeks). Results:For the weekly patterns, we found significantly decreased deep (1.26 ± 0.18 min/week, p < 0.001), light (0.72 ± 0.37 min/week, p = 0.05), and total sleep time (1.56 ± 0.47 min/week, p < 0.001) as well as increased awake time (1.32 ± 0.34 min/week, p < 0.001). For the aggregated changes, we found similar patterns to weekly changes. Women (⩾30 years) had an even greater decrease in deep sleep (1.50 ± 0.22 min/week, p < 0.001) than those younger (0.84 ± 0.29 min/week, p = 0.04). Women who were both overweight/obese and ⩾30 years experienced an increase in rapid eye movement sleep (0.84 ± 0.31 min/week, p = 0.008), but those of normal weight (<30 years) did not. Conclusion:This study appears to be the first to describe continuous changes in sleep parameters during pregnancy at home. Our study provides preliminary evidence that sleep parameters could be potential non-invasive physiological markers predicting perinatal outcomes. 
    more » « less
  4. Abstract The individualized treatment rule (ITR), which recommends an optimal treatment based on individual characteristics, has drawn considerable interest from many areas such as precision medicine, personalized education, and personalized marketing. Existing ITR estimation methods mainly adopt 1 of 2 or more treatments. However, a combination of multiple treatments could be more powerful in various areas. In this paper, we propose a novel double encoder model (DEM) to estimate the ITR for combination treatments. The proposed double encoder model is a nonparametric model which not only flexibly incorporates complex treatment effects and interaction effects among treatments but also improves estimation efficiency via the parameter-sharing feature. In addition, we tailor the estimated ITR to budget constraints through a multi-choice knapsack formulation, which enhances our proposed method under restricted-resource scenarios. In theory, we provide the value reduction bound with or without budget constraints, and an improved convergence rate with respect to the number of treatments under the DEM. Our simulation studies show that the proposed method outperforms the existing ITR estimation in various settings. We also demonstrate the superior performance of the proposed method in patient-derived xenograft data that recommends optimal combination treatments to shrink the tumour size of the colorectal cancer. 
    more » « less
  5. Free, publicly-accessible full text available December 24, 2025