Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available January 8, 2026
-
Tin antimonide (SnSb) is a promising alloying anode for sodium-ion batteries due to its high theoretical capacity and relative stability. The material is popular in the battery field, but, to our knowledge, few studies have been conducted on the influence of altering Sn and Sb stoichiometry on anode capacity retention and efficiency over time. Here, Sn-Sb electrodes were synthesized with compositional control by optimizing electrodeposition parameters and stoichiometry in solution and the alloys were cycled in sodium-ion half-cells to investigate the effects of stoichiometry on both performance and electrochemical phenomena. Higher concentrations of antimony deposited into the films were found to best maintain specific capacity over 270 cycles in the tin-antimony alloys, with each cell showing a slow, gradual decrease in capacity. We identified that a 1:3 ratio of Sn:Sb retained a specific capacity of 486 mAh g−1after 270 cycles, highlighting a need to explore this material further. These results demonstrate how control over stoichiometry in Sn-Sb electrodes is a viable method for tuning performance.more » « less
-
Alloy-based materials such as antimony (Sb) are of interest for both Li/Na-ion batteries due to their high theoretical capacity and electronic conductivity. Of the various ways to fabricate Sb films (slurry casting, sputtering, etc.) one promising route is through electrodeposition. Electrodeposition is an industrially relevant synthetic technique that allows for the use of solution additives to control different characteristics such as film uniformity, morphology, and electrical conductivity. Solution additives such as cetyltrimethylammonium bromide (CTAB) and bis(3-sulfopropyl) disulfide (SPS) have been used to control different characteristics such as particle morphology and electrical conductivity in various electrodeposits but have not been applied to the electrodeposition of Sb for battery applications. In this study, Sb films were electrodeposited with varied concentrations of CTAB and SPS and the structure, morphology, composition, and electrochemical performance in Na-ion batteries were compared. We report that CTAB and SPS additives can significantly influence electrodeposited Sb films by altering the morphology and reduce the crystallinity, affecting the electrochemical performance. These studies provide valuable insight into the tunability of alloy-based films through electrodeposition and solution additives for battery applications.more » « less
-
Alloy-based materials such as antimony (Sb) are of interest for both Li/Na-ion batteries due to their high theoretical capacity and electronic conductivity. Of the various ways to fabricate Sb films (slurry casting, sputtering, etc.) one promising route is through electrodeposition. Electrodeposition is an industrially relevant synthetic technique that allows for the use of solution additives to control different characteristics such as film uniformity, morphology, and electrical conductivity. Solution additives such as cetyltrimethylammonium bromide (CTAB) and bis(3-sulfopropyl) disulfide (SPS) have been used to control different characteristics such as particle morphology and electrical conductivity in various electrodeposits but have not been applied to the electrodeposition of Sb for battery applications. In this study, Sb films were electrodeposited with varied concentrations of CTAB and SPS and the structure, morphology, composition, and electrochemical performance in Na-ion batteries were compared. We report that CTAB and SPS additives can significantly influence electrodeposited Sb films by altering the morphology and reduce the crystallinity, affecting the electrochemical performance. These studies provide valuable insight into the tunability of alloy-based films through electrodeposition and solution additives for battery applications.more » « less
An official website of the United States government
